

Scientific Letters

III 1H-TOXRUN International Congress 2024 02-03 May, 2024 | Porto, Portugal

Oral Communication 3

Bacteriocin dynamics in *Enterococcus faecium* and *Enterococcus lactis*: implications for clinical and commensal strain interactions

<u>Ana C. Almeida-Santos</u> ^{1,2,*}, Ana P. Tedim ³, Bárbara Duarte ^{1,2}, Michael Brilhante ^{1,2}, Teresa M. Coque ⁴, Carla Novais ^{1,2}, Ana R. Freitas ^{1,2,5} and Luísa Peixe ^{1,2}

Abstract

Background: Enterococcus faecium-Efm and E.lactis-Elts (former Efm-cladeB) colonize the human gut, with Efm also being a leading hospital-pathogen. Dynamics influencing strain dominance in competitive environments (e.g., infection/colonization) are not fully understood, but bacteriocins may provide competitive advantage to clinical Efm or commensal Elts strains. Objective: We explored bacteriocin content of contemporary Efm and Elts, isolated from healthy/diseased humans, and correlated it with their inhibition profiles against strains across these species. Methods: A collection of 129 strains [91 clinical-Efm (77 vancomycin-resistant-VRE); 35 healthy-volunteers (21-Efm;14-Elts)] from 1996-2022 were challenged against each other by a qualitative bacteriocin production/sensitivity-assay (soft-agar-overlaytechnique). Eighty-eight representatives were sequenced (Illumina-NovaSeq) to establish clonality, antibiotic profiles (CGE-tool), and bacteriocins (homemade-database) [1]. Results: Elts (93%) and Efm (87%) carried ≥ 1 bacteriocin. Twenty-one bacteriocins were found, including 8 newly identified. Efm exhibited greater diversity (1-9; \bar{x} =3.6 vs 1-5; \bar{x} =2.6) and both species presented exclusive bacteriocin genes (Efm:bac43/AS5/AS9/enxA/B/entB; Elts:entL50A/B/GM-1). Bacteriocins 43/AS5/AS11/AS9/entA were significantly associated with clinical-Efm-strains (p < 0.05),AS8/bac32/entQ/AS4/entl50A/B/GM-1 were exclusive to commensal ones. All were susceptible to inhibition, while 53% of Elts and 65% of Efm (clinical-50%; commensal-39%) inhibited ≥ 1 strain. Those unable to inhibit others were mostly recovered < 2007 or lacked bac43. More bacteriocin genes correlated with less inhibition, and similar profiles resulted in comparable inhibition patterns. Among clinical isolates, ST117, ST78 and ST80 showed a higher inhibitory spectrum. ST78-related strains, particularly ST117, demonstrated activity against ST18-related strains previously dominant in Portuguese hospitals, but not vice-versa. VRE were inhibited by 26% of commensal-strains (Efm/Elts with diverse profiles/STs), while inhibiting up to 85% of them. Conclusions: Distinct bacteriocin profiles in clinical/commensal isolates, coupled with strain-specific and/or mutual strain inhibition dynamics, suggest a competitive landscape for Efm. Commensal strains inhibited VRE, showcasing their potential to counteract resistant strains. This delicate balance, influenced by unknown factors, underscores the valuable insights bacteriocins could provide for future eco-evo strategies combating human infections caused by Efm.

Keywords: bacteriocins; competitive interactions; vancomycin-resistant *Enterococcus faecium; Enterococcus lactis*

¹ UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal

² Associate Laboratory i4HB - Institute for Health and Bioeconomy. Faculty of Pharmacy. University of Porto. Porto, Portugal

³ Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, Spain

⁴ Hospital Ramón y Cajal -IRYCIS, Madrid, Spain; CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain

⁵ UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal

^{*} Correspondence: acfasantos@gmail.com

Acknowledgments

This work received financial support from national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through the exploratory project EXPL/SAU-INF/0261/2021 and UIDP/04378/2020, UIDB/04378/2020 and i4HB research project LA/P/0140/2020. Ana C. Almeida-Santos acknowledges her UI/BD/151317/2021 fellowship from FCT/MCTES through national funds.

References

1. Tedim, A.P.; Almeida-Santos, A.C.; Lanza, V.F.; Novais, C.; Coque, T.M.; Freitas, A.R.; Peixe, L. Bacteriocin Distribution Patterns in *Enterococcus faecium* and *Enterococcus lactis*: Bioinformatic Analysis Using a Tailored Genomics Framework. *bioRxiv* 2023 (preprint).

In Scientific Letters, works are published under a CC-BY license (Creative Commons Attribution 4.0 International License at https://creativecommons.org/licenses/by/4.0/), the most open license available. The users can share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material for any purpose, even commercially), as long as they give appropriate credit, provide a link to the license, and indicate if changes were made (read the full text of the license terms and conditions of use at https://creativecommons.org/licenses/by/4.0/legalcode).