

OPEN ACCESS Scientific Letters

Poster 73

Evaluation of P-glycoprotein activity mediated by fiscalin derivatives at the rat intestinal barrier

Beatriz Moreira 1,*, Pedro Sousa 1,*, Nuno Silva 1, Nuno Milhazes 1,2, Renata Silva 3,4, Fernando Remião 3,4, Maria Emília Sousa 5,6 and Carolina Rocha-Pereira 1,2

- ¹ UCIBIO Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- ² Associate Laboratory i4HB Institute for Health and Bioeconomy, University Institute of Health Sciences CESPU, 4585 -116 Gandra, Portugal
- ³ UCIBIO—Applied Molecular Biosciences Unit, Requimte, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- ⁴ Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313
- ⁵ CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- ⁶ Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- * Correspondence: a33862@alunos.cespu.pt (BM); a33813@alunos.cespu.pt (PS)

Abstract

Background: P-glycoprotein (P-gp) is an active efflux pump that reduces xenobiotics' accumulation inside cells, and which activity can be modulated by inhibitors, inducers and activators [1,2]. The first ones have been used to counteract the multidrug resistance (MDR) phenomena and the inducers and activators have been proposed as a therapeutic approach in intoxication scenarios. In fact, P-gp binds several unrelated hydrophobic drugs and its activity can be changed in order to increase or decrease drugs intracellular accumulation. Previous in vitro studies showed that fiscalins, marine-derived compounds, are able to alter P-gp transport activity in differentiated neuronal SH-SY5Y cells. Interestingly, some fiscalin derivatives showed to act as inhibitors, whether others were activators of P-gp expressed in SH-SY5Y cells [3]. **Objective:** Considering the fact that P-gp is a major efflux pump expressed in barrier tissues, influencing xenobiotics' pharmacokinetics and bioavailability, the main purpose of this study is to investigate the modulatory effects of two fiscalin derivatives, FISC 1 and FISC 2, on P-gp activity in the rat intestinal barrier, using ex vivo approaches. Methods: The study was performed at the distal portion of the rat ileum, using everted intestinal sacs as an ex vivo model, aiming to evaluate the potential immediate effects of the fiscalin derivatives on P-gp transport activity, as a result of a direct inhibition or activation of this pump. P-gp activity was evaluated in rat everted intestinal sacs after a direct and short contact of the tested fiscalin derivatives (5 µM), in the presence and absence of ZOS (5 µM). A fluorescent P-gp substrate widely used in these assays is rhodamine 123 (RHO 123), which allows for the direct evaluation of P-gp activity by measuring RHO 123 fluorescence in samples of mucosal medium, determined by spectrofluorometry. Results and **Conclusions:** The findings revealed that FISC 1 is able to activate P-gp activity at rat intestinal barrier, highlighting the pharmaco(toxico)kinetic relevance of this efflux protein.

Keywords: fiscalin derivatives; P-glycoprotein; inhibition; activation; ex vivo; rat intestine

Acknowledgments/Funding

This work received financial support through the annual funding of 1H-TOXRUN of the University Institute of Health Sciences (IUCS-CESPU) and UCIBIO - Associate Laboratory i4HB.

References

1. Rocha-Pereira, C., Ghanem, C. I., Silva, R., Casanova, A. G., Duarte-Araújo, M., Gonçalves-Monteiro, S., Sousa, E., Bastos, M. L., & Remião, F. 2020. P-glycoprotein activation by 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) in rat distal ileum: ex vivo and in vivo studies. Toxicology and applied pharmacology, 386, https://doi.org/10.1016/j.taap.2019.114832

- Silva, R., Vilas-Boas, V., Carmo, H., Dinis-Oliveira, R. J., Carvalho, F., de Lourdes Bastos, M., & Remião, F. 2015.
 Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. *Pharmacology & therapeutics*, 149, 1–123. https://doi.org/10.1016/j.pharmthera.2014.11.013
- 3. Barreiro, S., Silva, B., Long, S., Pinto, M., Remião, F., Sousa, E., & Silva, R. 2022. Fiscalin Derivatives as Potential Neuroprotective Agents. *Pharmaceutics*, 14(7), 1456. https://doi.org/10.3390/pharmaceutics14071456

In Scientific Letters, works are published under a CC-BY license (Creative Commons Attribution 4.0 International License at https://creativecommons.org/licenses/by/4.0/), the most open license available. The users can share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material for any purpose, even commercially), as long as they give appropriate credit, provide a link to the license, and indicate if changes were made (read the full text of the license terms and conditions of use at https://creativecommons.org/licenses/by/4.0/legalcode).