The role of autophagy in cancer chemotherapy drug resistance

Authors

  • Monireh Asoudeh Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA https://orcid.org/0000-0003-4787-6918
  • Paul Dalhaimer Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA https://orcid.org/0000-0003-2929-3372

DOI:

https://doi.org/10.48797/sl.2022.10

Keywords:

autophagy, chemotherapy, drug resistance, cancer, reactive oxygen species

Abstract

About 650,000 cancer patients are treated with chemotherapy drugs each year. There have been tremendous advances in this field over the past several decades. However, major obstacles remain. One of these obstacles is that cancer cells become drug resistant. 90% of clinical failures in chemotherapy treatment are because of drug resistance. In this review, we focus on the role of autophagy in cancer cell drug resistance. In non-cancerous cells, autophagy is constitutively active, but can be augmented by nutrient deprivation, reactive oxygen species (ROS), and pathogen invasion. It can either keep cells alive or trigger apoptosis, depending on the degree of disruption of cell homeostasis. These are critical considerations in cancer treatment: autophagy can either kill cells or it can keep cancer cells alive, furthering drug resistance. In cancer cells, chemotherapy typically triggers ROS. ROS then activate autophagy through several pathways. Thus, understanding how autophagy works in cancer cells that have been exposed to drugs can be a valuable weapon to combat drug resistance.

References

Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348, doi:10.15171/apb.2017.041.

Hourdequin, K.C.; Schpero, W.L.; McKenna, D.R.; Piazik, B.L.; Larson, R.J. Toxic Effect of Chemotherapy Dosing Using Actual Body Weight in Obese versus Normal-Weight Patients: A Systematic Review and Meta-Analysis. Ann. Oncol. 2013, 24, 2952–2962, doi:10.1093/annonc/mdt294.

Klionsky, D.J. et al. Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (3rd Edition. Autophagy 2016, 12, 1–222, doi:10.1080/15548627.2015.1100356.

Melia, T.J.; Lystad, A.H.; Simonsen, A. Autophagosome Biogenesis: From Membrane Growth to Closure. J. Cell Biol. 2020, 219, doi:10.1083/jcb.202002085.

Mauvezin, C.; Neisch, A.L.; Ayala, C.I.; Kim, J.; Beltrame, A.; Braden, C.R.; Gardner, M.K.; Hays, T.S.; Neufeld, T.P. Coordination of Autophagosome-Lysosome Fusion and Transport by a Klp98A-Rab14 Complex. J. Cell Sci. 2016, doi:10.1242/jcs.175224.

Jackson, M.P.; Hewitt, E.W. Cellular Proteostasis: Degradation of Misfolded Proteins by Lysosomes. Essays Biochem. 2016, 60, 173–180, doi:10.1042/EBC20160005.

Hurley, J.H.; Young, L.N. Mechanisms of Autophagy Initiation. Annu. Rev. Biochem. 2017, 86, 225–244, doi:10.1146/annurev-biochem-061516-044820.

Desantis, V.; Saltarella, I.; Lamanuzzi, A.; Mariggiò, M.A.; Racanelli, V.; Vacca, A.; Frassanito, M.A. Autophagy: A New Mechanism of Prosurvival and Drug Resistance in Multiple Myeloma. Transl. Oncol. 2018, 11, 1350–1357, doi:10.1016/j.tranon.2018.08.014.

Anozie, U.C.; Dalhaimer, P. Molecular Links among Non-Biodegradable Nanoparticles, Reactive Oxygen Species, and Autophagy. Adv. Drug Deliv. Rev. 2017, 122, 65–73, doi:10.1016/j.addr.2017.01.001.

Li, X.; Zhou, Y.; Li, Y.; Yang, L.; Ma, Y.; Peng, X.; Yang, S.; Liu, J.; Li, H. Autophagy: A Novel Mechanism of Chemoresistance in Cancers. Biomed. Pharmacother. 2019, 119, 109415, doi:10.1016/j.biopha.2019.109415.

Chen, Y.; McMillan-Ward, E.; Kong, J.; Israels, S.J.; Gibson, S.B. Oxidative Stress Induces Autophagic Cell Death Independent of Apoptosis in Transformed and Cancer Cells. Cell Death Differ. 2008, 15, 171–182, doi:10.1038/sj.cdd.4402233.

Rea, S.L.; Walsh, J.P.; Layfield, R.; Ratajczak, T.; Xu, J. New Insights Into the Role of Sequestosome 1/P62 Mutant Proteins in the Pathogenesis of Paget’s Disease of Bone. Endocr. Rev. 2013, 34, 501–524, doi:10.1210/er.2012-1034.

Kirkin, V.; Lamark, T.; Johansen, T.; Dikic, I. NBR1 Co-Operates with P62 in Selective Autophagy of Ubiquitinated Targets. Autophagy 2009, 5, 732–733, doi:10.4161/auto.5.5.8566.

Kirkin, V.; Lamark, T.; Sou, Y.-S.; Bjørkøy, G.; Nunn, J.L.; Bruun, J.-A.; Shvets, E.; McEwan, D.G.; Clausen, T.H.; Wild, P.; et al. A Role for NBR1 in Autophagosomal Degradation of Ubiquitinated Substrates. Mol. Cell 2009, 33, 505–516, doi:10.1016/j.molcel.2009.01.020.

Lamark, T.; Kirkin, V.; Dikic, I.; Johansen, T. NBR1 and P62 as Cargo Receptors for Selective Autophagy of Ubiquitinated Targets. Cell Cycle 2009, 8, 1986–1990, doi:10.4161/cc.8.13.8892.

Hibshman, J.D.; Leuthner, T.C.; Shoben, C.; Mello, D.F.; Sherwood, D.R.; Meyer, J.N.; Baugh, L.R. Nonselective Autophagy Reduces Mitochondrial Content during Starvation in Caenorhabditis Elegans. Am. J. Physiol. Physiol. 2018, 315, C781–C792, doi:10.1152/ajpcell.00109.2018.

Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of Glutathione in Cancer Progression and Chemoresistance. Oxid. Med. Cell. Longev. 2013, 2013, 1–10, doi:10.1155/2013/972913.

Vatansever, F.; de Melo, W.C.M.A.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.A.; Yin, R.; et al. Antimicrobial Strategies Centered around Reactive Oxygen Species – Bactericidal Antibiotics, Photodynamic Therapy, and Beyond. FEMS Microbiol. Rev. 2013, 37, 955–989, doi:10.1111/1574-6976.12026.

Snezhkina, A. V.; Kudryavtseva, A. V.; Kardymon, O.L.; Savvateeva, M. V.; Melnikova, N. V.; Krasnov, G.S.; Dmitriev, A.A. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxid. Med. Cell. Longev. 2019, 2019, 1–17, doi:10.1155/2019/6175804.

Fürstenberger, G.; Krieg, P.; Müller-Decker, K.; Habenicht, A.J.R. What Are Cyclooxygenases and Lipoxygenases Doing in the Driver’s Seat of Carcinogenesis? Int. J. Cancer 2006, 119, 2247–2254, doi:10.1002/ijc.22153.

Poillet-Perez, L.; Despouy, G.; Delage-Mourroux, R.; Boyer-Guittaut, M. Interplay between ROS and Autophagy in Cancer Cells, from Tumor Initiation to Cancer Therapy. Redox Biol. 2015, 4, 184–192, doi:10.1016/j.redox.2014.12.003.

Kim, J.; Kundu, M.; Viollet, B.; Guan, K.-L. AMPK and MTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141, doi:10.1038/ncb2152.

Egan, D.F.; Shackelford, D.B.; Mihaylova, M.M.; Gelino, S.; Kohnz, R.A.; Mair, W.; Vasquez, D.S.; Joshi, A.; Gwinn, D.M.; Taylor, R.; et al. Phosphorylation of ULK1 (HATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science (80-. ). 2011, 331, 456–461, doi:10.1126/science.1196371.

Egan, D.; Kim, J.; Shaw, R.J.; Guan, K.-L. The Autophagy Initiating Kinase ULK1 Is Regulated via Opposing Phosphorylation by AMPK and MTOR. Autophagy 2011, 7, 643–644, doi:10.4161/auto.7.6.15123.

Djavaheri-Mergny, M.; Amelotti, M.; Mathieu, J.; Besançon, F.; Bauvy, C.; Souquère, S.; Pierron, G.; Codogno, P. NF-ΚB Activation Represses Tumor Necrosis Factor-α-Induced Autophagy. J. Biol. Chem. 2006, 281, 30373–30382, doi:10.1074/jbc.M602097200.

Boyer-Guittaut, M.; Poillet, L.; Liang, Q.; Bôle-Richard, E.; Ouyang, X.; Benavides, G.A.; Chakrama, F.-Z.; Fraichard, A.; Darley-Usmar, V.M.; Despouy, G.; et al. The Role of GABARAPL1/GEC1 in Autophagic Flux and Mitochondrial Quality Control in MDA-MB-436 Breast Cancer Cells. Autophagy 2014, 10, 986–1003, doi:10.4161/auto.28390.

Kauffman, K.J.; Yu, S.; Jin, J.; Mugo, B.; Nguyen, N.; O’Brien, A.; Nag, S.; Lystad, A.H.; Melia, T.J. Delipidation of Mammalian Atg8-Family Proteins by Each of the Four ATG4 Proteases. Autophagy 2018, 1–19, doi:10.1080/15548627.2018.1437341.

Scherz-Shouval, R.; Shvets, E.; Fass, E.; Shorer, H.; Gil, L.; Elazar, Z. Reactive Oxygen Species Are Essential for Autophagy and Specifically Regulate the Activity of Atg4. EMBO J. 2007, 26, 1749–1760, doi:10.1038/sj.emboj.7601623.

De Gaetano, A.; Gibellini, L.; Zanini, G.; Nasi, M.; Cossarizza, A.; Pinti, M. Mitophagy and Oxidative Stress: The Role of Aging. Antioxidants 2021, 10, 794, doi:10.3390/antiox10050794.

Yoo, S.-M.; Jung, Y.-K. A Molecular Approach to Mitophagy and Mitochondrial Dynamics. Mol Cells 41, 18–26, doi:10.14348/molcells.2018.2277.

Shally, A.; McDonagh, B. The Redox Environment and Mitochondrial Dysfunction in Age-Related Skeletal Muscle Atrophy. Biogerontology 2020, 21, 461–473, doi:10.1007/s10522-020-09879-7.

Chen, Y.; Dorn, G.W. PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria. Science (80-. ). 2013, 340, 471–475, doi:10.1126/science.1231031.

Padman, B.S.; Nguyen, T.N.; Uoselis, L.; Skulsuppaisarn, M.; Nguyen, L.K.; Lazarou, M. LC3/GABARAPs Drive Ubiquitin-Independent Recruitment of Optineurin and NDP52 to Amplify Mitophagy. Nat. Commun. 2019, 10, 408, doi:10.1038/s41467-019-08335-6.

Lazarou, M.; Sliter, D.A.; Kane, L.A.; Sarraf, S.A.; Wang, C.; Burman, J.L.; Sideris, D.P.; Fogel, A.I.; Youle, R.J. The Ubiquitin Kinase PINK1 Recruits Autophagy Receptors to Induce Mitophagy. Nature 2015, 524, 309–314, doi:10.1038/nature14893.

Van Humbeeck, C.; Cornelissen, T.; Vandenberghe, W. Ambra1: A Parkin-Binding Protein Involved in Mitophagy. Autophagy 2011, 7, 1555–1556, doi:10.4161/auto.7.12.17893.

Chen, M.; Chen, Z.; Wang, Y.; Tan, Z.; Zhu, C.; Li, Y.; Han, Z.; Chen, L.; Gao, R.; Liu, L.; et al. Mitophagy Receptor FUNDC1 Regulates Mitochondrial Dynamics and Mitophagy. Autophagy 2016, 12, 689–702, doi:10.1080/15548627.2016.1151580.

Zhang, T.; Xue, L.; Li, L.; Tang, C.; Wan, Z.; Wang, R.; Tan, J.; Tan, Y.; Han, H.; Tian, R.; et al. BNIP3 Protein Suppresses PINK1 Kinase Proteolytic Cleavage to Promote Mitophagy. J. Biol. Chem. 2016, 291, 21616–21629, doi:10.1074/jbc.M116.733410.

Novak, I.; Kirkin, V.; McEwan, D.G.; Zhang, J.; Wild, P.; Rozenknop, A.; Rogov, V.; Löhr, F.; Popovic, D.; Occhipinti, A.; et al. Nix Is a Selective Autophagy Receptor for Mitochondrial Clearance. EMBO Rep. 2010, 11, 45–51, doi:10.1038/embor.2009.256.

Bhujabal, Z.; Birgisdottir, Å.B.; Sjøttem, E.; Brenne, H.B.; Øvervatn, A.; Habisov, S.; Kirkin, V.; Lamark, T.; Johansen, T. FKBP8 Recruits LC3A to Mediate Parkin‐independent Mitophagy. EMBO Rep. 2017, 18, 947–961, doi:10.15252/embr.201643147.

Otsu, K.; Murakawa, T.; Yamaguchi, O. BCL2L13 Is a Mammalian Homolog of the Yeast Mitophagy Receptor Atg32. Autophagy 2015, 11, 1932–1933, doi:10.1080/15548627.2015.1084459.

Yamaguchi, O.; Murakawa, T.; Nishida, K.; Otsu, K. Receptor-Mediated Mitophagy. J. Mol. Cell. Cardiol. 2016, 95, 50–56, doi:10.1016/j.yjmcc.2016.03.010.

Wei, Y.; Chiang, W.-C.; Sumpter, R.; Mishra, P.; Levine, B. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell 2017, 168, 224-238.e10, doi:10.1016/j.cell.2016.11.042.

Zhang, Y.; Yao, Y.; Qiu, X.; Wang, G.; Hu, Z.; Chen, S.; Wu, Z.; Yuan, N.; Gao, H.; Wang, J.; et al. Listeria Hijacks Host Mitophagy through a Novel Mitophagy Receptor to Evade Killing. Nat. Immunol. 2019, 20, 433–446, doi:10.1038/s41590-019-0324-2.

Kim, J.; Kim, J.; Bae, J.-S. ROS Homeostasis and Metabolism: A Critical Liaison for Cancer Therapy. Exp. Mol. Med. 2016, 48, e269–e269, doi:10.1038/emm.2016.119.

Storz, Peter Reactive Oxygen Species in Tumor Progression. Front. Biosci. 2005, 10, 1881, doi:10.2741/1667.

Rohrmann, S.; Overvad, K.; Bueno-de-Mesquita, H.B.; Jakobsen, M.U.; Egeberg, R.; Tjønneland, A.; Nailler, L.; Boutron-Ruault, M.-C.; Clavel-Chapelon, F.; Krogh, V.; et al. Meat Consumption and Mortality - Results from the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2013, 11, 63, doi:10.1186/1741-7015-11-63.

del Río, L.A.; Sandalio, L.M.; Palma, J.; Bueno, P.; Corpas, F.J. Metabolism of Oxygen Radicals in Peroxisomes and Cellular Implications. Free Radic. Biol. Med. 1992, 13, 557–580, doi:10.1016/0891-5849(92)90150-F.

Tang, Y.; Wang, S.; Jiang, J.; Liang, X. Links between Cancer Stem Cells and Epithelial&Ndash; Mesenchymal Transition. Onco. Targets. Ther. 2015, 2973, doi:10.2147/OTT.S91863.

de Sá Junior, P.L.; Câmara, D.A.D.; Porcacchia, A.S.; Fonseca, P.M.M.; Jorge, S.D.; Araldi, R.P.; Ferreira, A.K. The Roles of ROS in Cancer Heterogeneity and Therapy. Oxid. Med. Cell. Longev. 2017, 2017, 1–12, doi:10.1155/2017/2467940.

Shi, X.; Zhang, Y.; Zheng, J.; Pan, J. Reactive Oxygen Species in Cancer Stem Cells. Antioxid. Redox Signal. 2012, 16, 1215–1228, doi:10.1089/ars.2012.4529.

Vafa, O.; Wade, M.; Kern, S.; Beeche, M.; Pandita, T.K.; Hampton, G.M.; Wahl, G.M. C-Myc Can Induce DNA Damage, Increase Reactive Oxygen Species, and Mitigate P53 Function. Mol. Cell 2002, 9, 1031–1044, doi:10.1016/S1097-2765(02)00520-8.

Thorgeirsson, S.S.; Factor, V.M.; Snyderwine, E.G. Transgenic Mouse Models in Carcinogenesis Research and Testing. Toxicol. Lett. 2000, 112–113, 553–555, doi:10.1016/S0378-4274(99)00224-6.

Yun, C.; Lee, S. The Roles of Autophagy in Cancer. Int. J. Mol. Sci. 2018, 19, 3466, doi:10.3390/ijms19113466.

Kenific, C.M.; Thorburn, A.; Debnath, J. Autophagy and Metastasis: Another Double-Edged Sword. Curr. Opin. Cell Biol. 2010, 22, 241–245, doi:10.1016/j.ceb.2009.10.008.

Singh, S.S.; Vats, S.; Chia, A.Y.-Q.; Tan, T.Z.; Deng, S.; Ong, M.S.; Arfuso, F.; Yap, C.T.; Goh, B.C.; Sethi, G.; et al. Dual Role of Autophagy in Hallmarks of Cancer. Oncogene 2018, 37, 1142–1158, doi:10.1038/s41388-017-0046-6.

Mariño, G.; Niso-Santano, M.; Baehrecke, E.H.; Kroemer, G. Self-Consumption: The Interplay of Autophagy and Apoptosis. Nat. Rev. Mol. Cell Biol. 2014, 15, 81–94, doi:10.1038/nrm3735.

Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F.A. The Role of Autophagy in Cancer: Therapeutic Implications. Mol. Cancer Ther. 2011, 10, 1533–1541, doi:10.1158/1535-7163.MCT-11-0047.

Gump, J.M.; Thorburn, A. Autophagy and Apoptosis: What Is the Connection? Trends Cell Biol. 2011, 21, 387–392, doi:10.1016/j.tcb.2011.03.007.

Li, X.; He, S.; Ma, B. Autophagy and Autophagy-Related Proteins in Cancer. Mol. Cancer 2020, 19, 12, doi:10.1186/s12943-020-1138-4.

Liou, G.-Y.; Storz, P. Reactive Oxygen Species in Cancer. Free Radic. Res. 2010, 44, 479–496, doi:10.3109/10715761003667554.

Sullivan, L.B.; Chandel, N.S. Mitochondrial Reactive Oxygen Species and Cancer. Cancer Metab. 2014, 2, 17, doi:10.1186/2049-3002-2-17.

Dadali, T.; Diers, A.R.; Kazerounian, S.; Muthuswamy, S.K.; Awate, P.; Ng, R.; Mogre, S.; Spencer, C.; Krumova, K.; Rockwell, H.E.; et al. Elevated Levels of Mitochondrial CoQ10 Induce ROS-Mediated Apoptosis in Pancreatic Cancer. Sci. Rep. 2021, 11, 5749, doi:10.1038/s41598-021-84852-z.

Yang, H.; Villani, R.M.; Wang, H.; Simpson, M.J.; Roberts, M.S.; Tang, M.; Liang, X. The Role of Cellular Reactive Oxygen Species in Cancer Chemotherapy. J. Exp. Clin. Cancer Res. 2018, 37, 266, doi:10.1186/s13046-018-0909-x.

Wang, H.; Liu, X.; Long, M.; Huang, Y.; Zhang, L.; Zhang, R.; Zheng, Y.; Liao, X.; Wang, Y.; Liao, Q.; et al. NRF2 Activation by Antioxidant Antidiabetic Agents Accelerates Tumor Metastasis. Sci. Transl. Med. 2016, 8, doi:10.1126/scitranslmed.aad6095.

Piskounova, E.; Agathocleous, M.; Murphy, M.M.; Hu, Z.; Huddlestun, S.E.; Zhao, Z.; Leitch, A.M.; Johnson, T.M.; DeBerardinis, R.J.; Morrison, S.J. Oxidative Stress Inhibits Distant Metastasis by Human Melanoma Cells. Nature 2015, 527, 186–191, doi:10.1038/nature15726.

Sznarkowska, A.; Kostecka, A.; Meller, K.; Bielawski, K.P. Inhibition of Cancer Antioxidant Defense by Natural Compounds. Oncotarget 2017, 8, 15996–16016, doi:10.18632/oncotarget.13723.

Sayin, V.I.; Ibrahim, M.X.; Larsson, E.; Nilsson, J.A.; Lindahl, P.; Bergo, M.O. Antioxidants Accelerate Lung Cancer Progression in Mice. Sci. Transl. Med. 2014, 6, doi:10.1126/scitranslmed.3007653.

Letai, A.G. Diagnosing and Exploiting Cancer’s Addiction to Blocks in Apoptosis. Nat. Rev. Cancer 2008, 8, 121–132, doi:10.1038/nrc2297.

Levine, B.; Sinha, S.; Kroemer, G. Bcl-2 Family Members: Dual Regulators of Apoptosis and Autophagy. Autophagy 2008, 4, 600–6,.

Zhou, Y.-Y.; Li, Y.; Jiang, W.-Q.; Zhou, L.-F. MAPK/JNK Signalling: A Potential Autophagy Regulation Pathway. Biosci. Rep. 2015, 35, doi:10.1042/BSR20140141.

Suhaili, S.H.; Karimian, H.; Stellato, M.; Lee, T.-H.; Aguilar, M.-I. Mitochondrial Outer Membrane Permeabilization: A Focus on the Role of Mitochondrial Membrane Structural Organization. Biophys. Rev. 2017, 9, 443–457, doi:10.1007/s12551-017-0308-0.

Wang, H.; Wang, Y.; Gao, H.; Wang, B.; Dou, L.; Li, Y. Piperlongumine Induces Apoptosis and Autophagy in Leukemic Cells through Targeting the PI3K/Akt/MTOR and P38 Signaling Pathways. Oncol. Lett. 2017, 15, 1423–1428, doi:10.3892/ol.2017.7498.

Tripathi, S.K.; Biswal, B.K. Piperlongumine, a Potent Anticancer Phytotherapeutic: Perspectives on Contemporary Status and Future Possibilities as an Anticancer Agent. Pharmacol. Res. 2020, 156, 104772, doi:10.1016/j.phrs.2020.104772.

Makhov, P.; Golovine, K.; Teper, E.; Kutikov, A.; Mehrazin, R.; Corcoran, A.; Tulin, A.; Uzzo, R.G.; Kolenko, V.M. Piperlongumine Promotes Autophagy via Inhibition of Akt/MTOR Signalling and Mediates Cancer Cell Death. Br. J. Cancer 2014, 110, 899–907, doi:10.1038/bjc.2013.810.

Wilhelm, S.M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J.M.; Lynch, M. Preclinical Overview of Sorafenib, a Multikinase Inhibitor That Targets Both Raf and VEGF and PDGF Receptor Tyrosine Kinase Signaling. Mol. Cancer Ther. 2008, 7, 3129–3140, doi:10.1158/1535-7163.MCT-08-0013.

Martin, A.P.; Park, M.A.; Mitchell, C.; Walker, T.; Rahmani, M.; Thorburn, A.; Häussinger, D.; Reinehr, R.; Grant, S.; Dent, P. BCL-2 Family Inhibitors Enhance Histone Deacetylase Inhibitor and Sorafenib Lethality via Autophagy and Overcome Blockade of the Extrinsic Pathway to Facilitate Killing. Mol. Pharmacol. 2009, 76, 327–341, doi:10.1124/mol.109.056309.

Rodríguez-Hernández, M.A.; de la Cruz-Ojeda, P.; Gallego, P.; Navarro-Villarán, E.; Staňková, P.; Del Campo, J.A.; Kučera, O.; Elkalaf, M.; Maseko, T.E.; Červinková, Z.; et al. Dose-Dependent Regulation of Mitochondrial Function and Cell Death Pathway by Sorafenib in Liver Cancer Cells. Biochem. Pharmacol. 2020, 176, 113902, doi:10.1016/j.bcp.2020.113902.

SAI, K.; YANG, D.; YAMAMOTO, H.; FUJIKAWA, H.; YAMAMOTO, S.; NAGATA, T.; SAITO, M.; YAMAMURA, T.; NISHIZAKI, T. A1 Adenosine Receptor Signal and AMPK Involving Caspase-9/-3 Activation Are Responsible for Adenosine-Induced RCR-1 Astrocytoma Cell Death. Neurotoxicology 2006, 27, 458–467, doi:10.1016/j.neuro.2005.12.008.

Fasano, C.; Disciglio, V.; Bertora, S.; Lepore Signorile, M.; Simone, C. FOXO3a from the Nucleus to the Mitochondria: A Round Trip in Cellular Stress Response. Cells 2019, 8, 1110, doi:10.3390/cells8091110.

Zhai, B.; Hu, F.; Jiang, X.; Xu, J.; Zhao, D.; Liu, B.; Pan, S.; Dong, X.; Tan, G.; Wei, Z.; et al. Inhibition of Akt Reverses the Acquired Resistance to Sorafenib by Switching Protective Autophagy to Autophagic Cell Death in Hepatocellular Carcinoma. Mol. Cancer Ther. 2014, 13, 1589–1598, doi:10.1158/1535-7163.MCT-13-1043.

Liang, C.; Dong, Z.; Cai, X.; Shen, J.; Xu, Y.; Zhang, M.; Li, H.; Yu, W.; Chen, W. Hypoxia Induces Sorafenib Resistance Mediated by Autophagy via Activating FOXO3a in Hepatocellular Carcinoma. Cell Death Dis. 2020, 11, 1017, doi:10.1038/s41419-020-03233-y.

Wu, Q.; Zhou, W.; Yin, S.; Zhou, Y.; Chen, T.; Qian, J.; Su, R.; Hong, L.; Lu, H.; Zhang, F.; et al. Blocking Triggering Receptor Expressed on Myeloid Cells‐1‐Positive Tumor‐Associated Macrophages Induced by Hypoxia Reverses Immunosuppression and Anti‐Programmed Cell Death Ligand 1 Resistance in Liver Cancer. Hepatology 2019, 70, 198–214, doi:10.1002/hep.30593.

Li, D.; Wang, T.; Sun, F.-F.; Feng, J.-Q.; Peng, J.-J.; Li, H.; Wang, C.; Wang, D.; Liu, Y.; Bai, Y.-D.; et al. MicroRNA-375 Represses Tumor Angiogenesis and Reverses Resistance to Sorafenib in Hepatocarcinoma. Cancer Gene Ther. 2021, 28, 126–140, doi:10.1038/s41417-020-0191-x.

Ucar, A.; Gupta, S.K.; Fiedler, J.; Erikci, E.; Kardasinski, M.; Batkai, S.; Dangwal, S.; Kumarswamy, R.; Bang, C.; Holzmann, A.; et al. The MiRNA-212/132 Family Regulates Both Cardiac Hypertrophy and Cardiomyocyte Autophagy. Nat. Commun. 2012, 3, 1078, doi:10.1038/ncomms2090.

Xie, M.; Fu, Z.; Cao, J.; Liu, Y.; Wu, J.; Li, Q.; Chen, Y. MicroRNA-132 and MicroRNA-212 Mediate Doxorubicin Resistance by down-Regulating the PTEN-AKT/NF-ΚB Signaling Pathway in Breast Cancer. Biomed. Pharmacother. 2018, 102, 286–294, doi:10.1016/j.biopha.2018.03.088.

Yang, Y.; Jiang, C.; Yang, Y.; Guo, L.; Huang, J.; Liu, X.; Wu, C.; Zou, J. Silencing of LncRNA-HOTAIR Decreases Drug Resistance of Non-Small Cell Lung Cancer Cells by Inactivating Autophagy via Suppressing the Phosphorylation of ULK1. Biochem. Biophys. Res. Commun. 2018, 497, 1003–1010, doi:10.1016/j.bbrc.2018.02.141.

Pan, B.; Chen, Y.; Song, H.; Xu, Y.; Wang, R.; Chen, L. Mir-24-3p Downregulation Contributes to VP16-DDP Resistance in Small-Cell Lung Cancer by Targeting ATG4A. Oncotarget 2015, 6, 317–331, doi:10.18632/oncotarget.2787.

Wang, H.; Chen, J.; Zhang, S.; Zheng, X.; Xie, S.; Mao, J.; Cai, Y.; Lu, X.; Hu, L.; Shen, J.; et al. MiR-223 Regulates Autophagy Associated with Cisplatin Resistance by Targeting FBXW7 in Human Non-Small Cell Lung Cancer. Cancer Cell Int. 2020, 20, 258, doi:10.1186/s12935-020-01284-x.

Wang, P.; Zhao, Z.; Guo, S.; Yang, T.; Chang, Z.; Li, D.; Zhao, W.; Wang, Y.; Sun, C.; Wang, Y.; et al. Roles of MicroRNA‐22 in Suppressing Proliferation and Promoting Sensitivity of Osteosarcoma Cells via Metadherin‐mediated Autophagy. Orthop. Surg. 2019, 11, 285–293, doi:10.1111/os.12442.

Meng, C.; Zhao, Z.; Bai, R.; Zhao, W.; Wang, Y.; Sun, L.; Sun, C.; Feng, W.; Guo, S. MicroRNA‑22 Regulates Autophagy and Apoptosis in Cisplatin Resistance of Osteosarcoma. Mol. Med. Rep. 2020, doi:10.3892/mmr.2020.11447.

Shen, Q.; Xu, Z.; Xu, S. Long Non‑coding RNA LUCAT1 Contributes to Cisplatin Resistance by Regulating the MiR‑514a‑3p/ULK1 Axis in Human Non‑small Cell Lung Cancer. Int. J. Oncol. 2020, doi:10.3892/ijo.2020.5106.

Ma, K.; Li, S.; Huo, X.; Guo, M.; Du, X.; Li, C.; Liu, X.; Lv, J.; Chen, Z. Exploring the Mechanism of Cisplatin Resistance by Transcriptome Sequencing and Reversing the Chemoresistance by Autophagy Inhibition in Small Cell Lung Cancer. Biochem. Biophys. Res. Commun. 2020, 533, 474–480, doi:10.1016/j.bbrc.2020.09.023.

Comincini, S.; Allavena, G.; Palumbo, S.; Morini, M.; Durando, F.; Angeletti, F.; Pirtoli, L.; Miracco, C. MicroRNA-17 Regulates the Expression of ATG7 and Modulates the Autophagy Process, Improving the Sensitivity to Temozolomide and Low-Dose Ionizing Radiation Treatments in Human Glioblastoma Cells. Cancer Biol. Ther. 2013, 14, 574–586, doi:10.4161/cbt.24597.

Zhou, H.; Feng, B.; Abudoureyimu, M.; Lai, Y.; Lin, X.; Tian, C.; Huang, G.; Chu, X.; Wang, R. The Functional Role of Long Non-Coding RNAs and Their Underlying Mechanisms in Drug Resistance of Non-Small Cell Lung Cancer. Life Sci. 2020, 261, 118362, doi:10.1016/j.lfs.2020.118362.

Kanzawa, T.; Germano, I.M.; Komata, T.; Ito, H.; Kondo, Y.; Kondo, S. Role of Autophagy in Temozolomide-Induced Cytotoxicity for Malignant Glioma Cells. Cell Death Differ. 2004, 11, 448–457, doi:10.1038/sj.cdd.4401359.

Qu, Y.; Tan, H.-Y.; Chan, Y.-T.; Jiang, H.; Wang, N.; Wang, D. The Functional Role of Long Noncoding RNA in Resistance to Anticancer Treatment. Ther. Adv. Med. Oncol. 2020, 12, 175883592092785, doi:10.1177/1758835920927850.

Pan, B.; Feng, B.; Chen, Y.; Huang, G.; Wang, R.; Chen, L.; Song, H. MiR-200b Regulates Autophagy Associated with Chemoresistance in Human Lung Adenocarcinoma. Oncotarget 2015, 6, 32805–32820, doi:10.18632/oncotarget.5352.

Hua, Y.-T.; Xu, W.-X.; Li, H.; Xia, M. Emerging Roles of MiR-133a in Human Cancers. J. Cancer 2021, 12, 198–206, doi:10.7150/jca.48769.

Yuan, Y.; Yao, Y.F.; Hu, S.N.; Gao, J.; Zhang, L.-L. MiR-133a Is Functionally Involved in Doxorubicin-Resistance in Breast Cancer Cells MCF-7 via Its Regulation of the Expression of Uncoupling Protein 2. PLoS One 2015, 10, e0129843, doi:10.1371/journal.pone.0129843.

WANG, X.; ZHU, W.; ZHAO, X.; WANG, P. RmiR-133a Enhances the Sensitivity of Hep-2 Cells and Vincristine-Resistant Hep-2v Cells to Cisplatin by Downregulating ATP7B Expression. Int. J. Mol. Med. 2016, 37, 1636–1642, doi:10.3892/ijmm.2016.2569.

Li, J.; Zhang, H.; Liu, M.; Xiang, Y.; Li, H.; Huang, F.; Li, H.; Dai, Z.; Gu, C.J.; Liao, X.; et al. MiR‐133a‐3p/FOXP3 Axis Regulates Cell Proliferation and Autophagy in Gastric Cancer. J. Cell. Biochem. 2020, 121, 3392–3405, doi:10.1002/jcb.29613.

Zhang, W.; Liu, Y.; Fu, Y.; Han, W.; Xu, H.; Wen, L.; Deng, Y.; Liu, K. Long Non-Coding RNA LINC00160 Functions as a Decoy of MicroRNA-132 to Mediate Autophagy and Drug Resistance in Hepatocellular Carcinoma via Inhibition of PIK3R3. Cancer Lett. 2020, 478, 22–33, doi:10.1016/j.canlet.2020.02.014.

Xiao, F.; Ouyang, B.; Zou, J.; Yang, Y.; Yi, L.; Yan, H. Trim14 Promotes Autophagy and Chemotherapy Resistance of Gastric Cancer Cells by Regulating AMPK/MTOR Pathway. Drug Dev. Res. 2020, 81, 544–550, doi:10.1002/ddr.21650.

Condello, M.; Mancini, G.; Meschini, S. The Exploitation of Liposomes in the Inhibition of Autophagy to Defeat Drug Resistance. Front. Pharmacol. 2020, 11, doi:10.3389/fphar.2020.00787.

Hu, Y.-J.; Zhang, J.-Y.; Luo, Q.; Xu, J.-R.; Yan, Y.; Mu, L.-M.; Bai, J.; Lu, W.-L. Nanostructured Dihydroartemisinin Plus Epirubicin Liposomes Enhance Treatment Efficacy of Breast Cancer by Inducing Autophagy and Apoptosis. Nanomaterials 2018, 8, 804, doi:10.3390/nano8100804.

Inokuchi-Shimizu, S.; Park, E.J.; Roh, Y.S.; Yang, L.; Zhang, B.; Song, J.; Liang, S.; Pimienta, M.; Taniguchi, K.; Wu, X.; et al. TAK1-Mediated Autophagy and Fatty Acid Oxidation Prevent Hepatosteatosis and Tumorigenesis. J. Clin. Invest. 2014, 124, 3566–3578, doi:10.1172/JCI74068.

Loibl, S.; Gianni, L. HER2-Positive Breast Cancer. Lancet 2017, 389, 2415–2429, doi:10.1016/S0140-6736(16)32417-5.

Barceló, C.; Sisó, P.; Maiques, O.; García-Mulero, S.; Sanz-Pamplona, R.; Navaridas, R.; Megino, C.; Felip, I.; Urdanibia, I.; Eritja, N.; et al. T-Type Calcium Channels as Potential Therapeutic Targets in Vemurafenib-Resistant BRAFV600E Melanoma. J. Invest. Dermatol. 2020, 140, 1253–1265, doi:10.1016/j.jid.2019.11.014.

Zhang, L.; Rastgoo, N.; Wu, J.; Zhang, M.; Pourabdollah, M.; Zacksenhaus, E.; Chen, Y.; Chang, H. MARCKS Inhibition Cooperates with Autophagy Antagonists to Potentiate the Effect of Standard Therapy against Drug-Resistant Multiple Myeloma. Cancer Lett. 2020, 480, 29–38, doi:10.1016/j.canlet.2020.03.020.

Peng, R.; Chen, Y.; Wei, L.; Li, G.; Feng, D.; Liu, S.; Jiang, R.; Zheng, S.; Chen, Y. Resistance to FGFR1-Targeted Therapy Leads to Autophagy via TAK1/AMPK Activation in Gastric Cancer. Gastric Cancer 2020, 23, 988–1002, doi:10.1007/s10120-020-01088-y.

Huang, F.; Chen, H.; Zheng, F.; Gao, Z.; Sun, P.; Peng, Q.; Liu, Y.; Deng, X.; Huang, Y.; Zhao, C.; et al. LncRNA BLACAT1 Is Involved in Chemoresistance of Non‑small Cell Lung Cancer Cells by Regulating Autophagy. Int. J. Oncol. 2018, doi:10.3892/ijo.2018.4614.

Sun, W.; Zu, Y.; Fu, X.; Deng, Y. Knockdown of LncRNA-XIST Enhances the Chemosensitivity of NSCLC Cells via Suppression of Autophagy. Oncol. Rep. 2017, doi:10.3892/or.2017.6056.

Xiong, H.; Ni, Z.; He, J.; Jiang, S.; Li, X.; He, J.; Gong, W.; Zheng, L.; Chen, S.; Li, B.; et al. LncRNA HULC Triggers Autophagy via Stabilizing Sirt1 and Attenuates the Chemosensitivity of HCC Cells. Oncogene 2017, 36, 3528–3540, doi:10.1038/onc.2016.521.

Lin, Z.; Niu, Y.; Wan, A.; Chen, D.; Liang, H.; Chen, X.; Sun, L.; Zhan, S.; Chen, L.; Cheng, C.; et al. RNA m 6 A Methylation Regulates Sorafenib Resistance in Liver Cancer through FOXO 3‐mediated Autophagy. EMBO J. 2020, 39, doi:10.15252/embj.2019103181.

Zhang, Y.; Yuan, Y.; Zhang, X.; Huang, D.; Wei, Y.; Yang, J. HMGB1‑mediated Autophagy Confers Resistance to Gemcitabine in Hormone‑independent Prostate Cancer Cells. Oncol. Lett. 2017, doi:10.3892/ol.2017.6965.

van den Berg, H. Asparaginase Revisited. Leuk. Lymphoma 2011, 52, 168–178, doi:10.3109/10428194.2010.537796.

Wang, L.; Yang, J.; Wang, H.; Fu, R.; Liu, X.; Piao, Y.; Wei, L.; Wang, J.; Zhang, L. LncRNA BCYRN1-Induced Autophagy Enhances Asparaginase Resistance in Extranodal NK/T-Cell Lymphoma. Theranostics 2021, 11, 925–940, doi:10.7150/thno.46655.

Ying, S.; Du, X.; Fu, W.; Yun, D.; Chen, L.; Cai, Y.; Xu, Q.; Wu, J.; Li, W.; Liang, G. Synthesis, Biological Evaluation, QSAR and Molecular Dynamics Simulation Studies of Potential Fibroblast Growth Factor Receptor 1 Inhibitors for the Treatment of Gastric Cancer. Eur. J. Med. Chem. 2017, 127, 885–899, doi:10.1016/j.ejmech.2016.10.066.

Carter, E.P.; Fearon, A.E.; Grose, R.P. Careless Talk Costs Lives: Fibroblast Growth Factor Receptor Signalling and the Consequences of Pathway Malfunction. Trends Cell Biol. 2015, 25, 221–233, doi:10.1016/j.tcb.2014.11.003.

Ajibade, A.A.; Wang, H.Y.; Wang, R.-F. Cell Type-Specific Function of TAK1 in Innate Immune Signaling. Trends Immunol. 2013, 34, 307–316, doi:10.1016/j.it.2013.03.007.

Seki, E. TAK1-Dependent Autophagy: A Suppressor of Fatty Liver Disease and Hepatic Oncogenesis. Mol. Cell. Oncol. 2014, 1, e968507, doi:10.4161/23723548.2014.968507.

Zhu, Y.; Huang, S.; Chen, S.; Chen, J.; Wang, Z.; Wang, Y.; Zheng, H. SOX2 Promotes Chemoresistance, Cancer Stem Cells Properties, and Epithelial–Mesenchymal Transition by β-Catenin and Beclin1/Autophagy Signaling in Colorectal Cancer. Cell Death Dis. 2021, 12, 449, doi:10.1038/s41419-021-03733-5.

Tian, T. Sox2 Enhances the Tumorigenicity and Chemoresistance of Cancer Stem-like Cells Derived from Gastric Cancer. J. Biomed. Res. 2012, 26, 336–345, doi:10.7555/JBR.26.20120045.

Zamame Ramirez, J.A.; Romagnoli, G.G.; Falasco, B.F.; Gorgulho, C.M.; Sanzochi Fogolin, C.; dos Santos, D.C.; Junior, J.P.A.; Lotze, M.T.; Ureshino, R.P.; Kaneno, R. Blocking Drug-Induced Autophagy with Chloroquine in HCT-116 Colon Cancer Cells Enhances DC Maturation and T Cell Responses Induced by Tumor Cell Lysate. Int. Immunopharmacol. 2020, 84, 106495, doi:10.1016/j.intimp.2020.106495.

MHAIDAT, N.M.; BOUKLIHACENE, M.; THORNE, R.F. 5-Fluorouracil-Induced Apoptosis in Colorectal Cancer Cells Is Caspase-9-Dependent and Mediated by Activation of Protein Kinase C-δ. Oncol. Lett. 2014, 8, 699–704, doi:10.3892/ol.2014.2211.

Chen, H.; Sun, B.; Wang, S.; Pan, S.; Gao, Y.; Bai, X.; Xue, D. Growth Inhibitory Effects of Dihydroartemisinin on Pancreatic Cancer Cells: Involvement of Cell Cycle Arrest and Inactivation of Nuclear Factor-ΚB. J. Cancer Res. Clin. Oncol. 2010, 136, 897–903, doi:10.1007/s00432-009-0731-0.

Ontikatze, T.; Rudner, J.; Handrick, R.; Belka, C.; Jendrossek, V. Dihydroartemisinin Is a Hypoxia-Active Anti-Cancer Drug in Colorectal Carcinoma Cells. Front. Oncol. 2014, 4, doi:10.3389/fonc.2014.00116.

Hu, C.; Zhou, L.; Cai, Y. Dihydroartemisinin Induces Apoptosis of Cervical Cancer Cells via Upregulation of RKIP and Downregulation of Bcl-2. Cancer Biol. Ther. 2014, 15, 279–288, doi:10.4161/cbt.27223.

Kang, X.; Wang, H.; Peng, H.; Chen, B.; Zhang, W.; Wu, A.; Xu, Q.; Huang, Y. Codelivery of Dihydroartemisinin and Doxorubicin in Mannosylated Liposomes for Drug-Resistant Colon Cancer Therapy. Acta Pharmacol. Sin. 2017, 38, 885–896, doi:10.1038/aps.2017.10.

Kobayashi, S.; Volden, P.; Timm, D.; Mao, K.; Xu, X.; Liang, Q. Transcription Factor GATA4 Inhibits Doxorubicin-Induced Autophagy and Cardiomyocyte Death. J. Biol. Chem. 2010, 285, 793–804, doi:10.1074/jbc.M109.070037.

Liu, P.; Fan, J.; Wang, Z.; Zai, W.; Song, P.; Li, Y.; Ju, D. The Role of Autophagy in the Cytotoxicity Induced by Trastuzumab Emtansine (T-DM1) in HER2-Positive Breast Cancer Cells. AMB Express 2020, 10, 107, doi:10.1186/s13568-020-01044-0.

Peng, Y.; Tang, D.; Zhao, M.; Kajiyama, H.; Kikkawa, F.; Kondo, Y. Long Non-Coding RNA: A Recently Accentuated Molecule in Chemoresistance in Cancer. Cancer Metastasis Rev. 2020, 39, 825–835, doi:10.1007/s10555-020-09910-w.

Zinnah, K.; Seol, J.; Park, S. Inhibition of Autophagy Flux by Sertraline Attenuates TRAIL Resistance in Lung Cancer via Death Receptor 5 Upregulation. Int. J. Mol. Med. 2020, 46, 795–805, doi:10.3892/ijmm.2020.4635.

Lin, Y.-H.; Lin, K.-H.; Yeh, C.-T. Thyroid Hormone in Hepatocellular Carcinoma: Cancer Risk, Growth Regulation, and Anticancer Drug Resistance. Front. Med. 2020, 7, doi:10.3389/fmed.2020.00174.

Chi, H.-C.; Chen, S.-L.; Tsai, C.-Y.; Chuang, W.-Y.; Huang, Y.-H.; Tsai, M.-M.; Wu, S.-M.; Sun, C.-P.; Yeh, C.-T.; Lin, K.-H. Thyroid Hormone Suppresses Hepatocarcinogenesis via DAPK2 and SQSTM1-Dependent Selective Autophagy. Autophagy 2016, 12, 2271–2285, doi:10.1080/15548627.2016.1230583.

Wu, J.; Yang, C.; Guo, C.; Li, X.; Yang, N.; Zhao, L.; Hang, H.; Liu, S.; Chu, P.; Sun, Z.; et al. SZC015, a Synthetic Oleanolic Acid Derivative, Induces Both Apoptosis and Autophagy in MCF-7 Breast Cancer Cells. Chem. Biol. Interact. 2016, 244, 94–104, doi:10.1016/j.cbi.2015.11.013.

LI, L.; LIN, J.; SUN, G.; WEI, L.; SHEN, A.; ZHANG, M.; PENG, J. Oleanolic Acid Inhibits Colorectal Cancer Angiogenesis in Vivo and in Vitro via Suppression of STAT3 and Hedgehog Pathways. Mol. Med. Rep. 2016, 13, 5276–5282, doi:10.3892/mmr.2016.5171.

Žiberna, L.; Šamec, D.; Mocan, A.; Nabavi, S.; Bishayee, A.; Farooqi, A.; Sureda, A.; Nabavi, S. Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy. Int. J. Mol. Sci. 2017, 18, 643, doi:10.3390/ijms18030643.

Shi, Y.; Song, Q.; Hu, D.; Zhuang, X.; Yu, S.; Teng, D. Oleanolic Acid Induced Autophagic Cell Death in Hepatocellular Carcinoma Cells via PI3K/Akt/MTOR and ROS-Dependent Pathway. Korean J. Physiol. Pharmacol. 2016, 20, 237, doi:10.4196/kjpp.2016.20.3.237.

Zhou, W.; Zeng, X.; Wu, X. Effect of Oleanolic Acid on Apoptosis and Autophagy of SMMC-7721 Hepatoma Cells. Med. Sci. Monit. 2020, 26, doi:10.12659/MSM.921606.

O’Leary, L.; van der Sloot, A.M.; Reis, C.R.; Deegan, S.; Ryan, A.E.; Dhami, S.P.S.; Murillo, L.S.; Cool, R.H.; de Sampaio, P.C.; Thompson, K.; et al. Decoy Receptors Block TRAIL Sensitivity at a Supracellular Level: The Role of Stromal Cells in Controlling Tumour TRAIL Sensitivity. Oncogene 2016, 35, 1261–1270, doi:10.1038/onc.2015.180.

Xia, D.; Zhang, Y.-T.; Xu, G.-P.; Yan, W.-W.; Pan, X.-R.; Tong, J.-H. Sertraline Exerts Its Antitumor Functions through Both Apoptosis and Autophagy Pathways in Acute Myeloid Leukemia Cells. Leuk. Lymphoma 2017, 58, 2208–2217, doi:10.1080/10428194.2017.1287358.

Amit, B.H.; Gil-Ad, I.; Taler, M.; Bar, M.; Zolokov, A.; Weizman, A. Proapoptotic and Chemosensitizing Effects of Selective Serotonin Reuptake Inhibitors on T Cell Lymphoma/Leukemia (Jurkat) in Vitro. Eur. Neuropsychopharmacol. 2009, 19, 726–734, doi:10.1016/j.euroneuro.2009.06.003.

Wei, Y.; Pattingre, S.; Sinha, S.; Bassik, M.; Levine, B. JNK1-Mediated Phosphorylation of Bcl-2 Regulates Starvation-Induced Autophagy. Mol. Cell 2008, 30, 678–688, doi:10.1016/j.molcel.2008.06.001.

Autophagy in cancer resistance to chemotherapy

Downloads

Published

2022-05-13

How to Cite

Asoudeh, M., & Dalhaimer, P. (2022). The role of autophagy in cancer chemotherapy drug resistance . Scientific Letters, 1(1), 4. https://doi.org/10.48797/sl.2022.10

Issue

Section

Reviews