The Use of Artificial Intelligence to Create a Virtual Patient for Oral and Maxillofacial Surgical Planning


  • Ana Paula Ayres Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
  • Daiane Stival Correa Department of Digital Implantology, GoBeyond Dental Courses, Curitiba, Brazil
  • Alan Jony de Moura e Costa Department of Digital Implantology, GoBeyond Dental Courses, Curitiba, Brazil
  • Guillermo Pradíes Department of Conservative and Prosthetic Dentistry, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
  • Arthur Rodriguez Gonzalez Côrtes Department of Dental Surgery, Faculty of Dental Surgery, University of Malta, Msida, Malta



computer-aided design, computer-aided manufacturing, dental implant, dental prosthesis


The advancement of digital image acquisition technologies in dentistry has facilitated the creation of virtual patients through the integration of two- and three-dimensional (2D and 3D) images within digital platforms. These images, sourced from technologies such as Cone Beam Computed Tomography (CBCT), intraoral scanners (IOS), and 3D facial scanners, can be aligned and merged to comprehensively assess the bone structure, gingival and soft tissues, and the dentition. Additionally, 2D clinical photographs are incorporated into the digital project, enhancing aesthetic analysis and planning. Artificial intelligence (AI) algorithms can also be used to enhance and facilitate 3D image alignment. However, detailed information on digital workflows to work with virtual patients for dental and maxillofacial treatment planning is lacking in the literature. The purpose of this article is to describe a technique to create a virtual patient to assess the relationship between the patient’s soft and hard tissues with the optional use of AI to enhance the quality of 3D-reconstructed models from CBCT. Within the limitations of this study, the technique described herein is suggested to be useful for prosthetically-driven treatment planning of surgical procedures such as crown lengthening, bone grafts and dental implant placement.


Cortes, A.R.G. Digital Dentistry: A Step‐by‐Step Guide and Case Atlas; John Wiley & Sons Ltd. : Hoboken, NJ, 2022; 10.1002/9781119852025.

Pozza, M.B.; Costa, A.J.M.; Burgoa, S.; Ventura, D.; Cortes, A.R.G. Digital workflow for low-cost 3D-printed custom healing abutment based on emergence profile CBCT segmentation. J Prosthet Dent 2022, 10.1016/j.prosdent.2022.10.019, doi:10.1016/j.prosdent.2022.10.019.

de Moura, A.J.; Burgoa, S.; Rayes, A.; da Silva, R.L.B.; Ayres, A.P.; Cortes, A.R.G. Digital Workflow for Designing CAD-CAM Custom Abutments of Immediate Implants Based on the Natural Emergence Profile of the Tooth to be Extracted. J Oral Implantol 2023, 49, 510-516, doi:10.1563/aaid-joi-D-20-00214.

Costa, A.; Burgoa, S.; Pinhata-Baptista, O.H.; Gutierrez, V.; Cortes, A.R.G. Digital workflow for image-guided immediate implant placement by using the socket-shield technique and custom abutment in the esthetic area. J Prosthet Dent 2023, 130, 155-159, doi:10.1016/j.prosdent.2021.07.016.

Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E., et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol 2018, 89 Suppl 1, S313-S318, doi:10.1002/JPER.17-0739.

Chapple, I.L.C.; Mealey, B.L.; Van Dyke, T.E.; Bartold, P.M.; Dommisch, H.; Eickholz, P.; Geisinger, M.L.; Genco, R.J.; Glogauer, M.; Goldstein, M., et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol 2018, 45 Suppl 20, S68-S77, doi:10.1111/jcpe.12940.

Lin, G.H.; Chan, H.L.; Wang, H.L. The significance of keratinized mucosa on implant health: a systematic review. J Periodontol 2013, 84, 1755-1767, doi:10.1902/jop.2013.120688.

Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. J Clin Periodontol 2018, 45 Suppl 20, S1-S8, doi:10.1111/jcpe.12935.

Gargiulo, A.W.; Wentz, F.M.; Orban, B. Dimensions and Relations of the Dentogingival Junction in Humans. J Periodontol 1961, 32, 261-267, doi:10.1902/jop.1961.32.3.261.

Cortes, A.R.G. Digital versus Conventional Workflow in Oral Rehabilitations: Current Status. Appl Sci 2022, 12, 3710, doi:10.3390/app12083710.

Choi, I.G.G.; Cortes, A.R.G.; Arita, E.S.; Georgetti, M.A.P. Comparison of conventional imaging techniques and CBCT for periodontal evaluation: A systematic review. Imaging Sci Dent 2018, 48, 79-86, doi:10.5624/isd.2018.48.2.79.

Costa, A.J.M.; Teixeira Neto, A.D.; Burgoa, S.; Gutierrez, V.; Cortes, A.R.G. Fully Digital Workflow with Magnetically Connected Guides for Full-Arch Implant Rehabilitation Following Guided Alveolar Ridge Reduction. J Prosthodont 2020, 29, 272-276, doi:10.1111/jopr.13150.

Joda, T.; Bragger, U. Complete digital workflow for the production of implant-supported single-unit monolithic crowns. Clin Oral Implants Res 2014, 25, 1304-1306, doi:10.1111/clr.12270.

Mangano, F.; Gandolfi, A.; Luongo, G.; Logozzo, S. Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health 2017, 17, 149, doi:10.1186/s12903-017-0442-x.

Bohner, L.; Gamba, D.D.; Hanisch, M.; Marcio, B.S.; Tortamano Neto, P.; Lagana, D.C.; Sesma, N. Accuracy of digital technologies for the scanning of facial, skeletal, and intraoral tissues: A systematic review. J Prosthet Dent 2019, 121, 246-251, doi:10.1016/j.prosdent.2018.01.015.

Amezua, X.; Iturrate, M.; Garikano, X.; Solaberrieta, E. Analysis of the influence of the facial scanning method on the transfer accuracy of a maxillary digital scan to a 3D face scan for a virtual facebow technique: An in vitro study. J Prosthet Dent 2022, 128, 1024-1031, doi:10.1016/j.prosdent.2021.02.007.

Bornstein, M.M.; Horner, K.; Jacobs, R. Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research. Periodontol 2000 2017, 73, 51-72, doi:10.1111/prd.12161.

Acar, B.; Kamburoglu, K. Use of cone beam computed tomography in periodontology. World J Radiol 2014, 6, 139-147, doi:10.4329/wjr.v6.i5.139.

Passos, L.; Soares, F.P.; Choi, I.G.G.; Cortes, A.R.G. Full digital workflow for crown lengthening by using a single surgical guide. J Prosthet Dent 2020, 124, 257-261, doi:10.1016/j.prosdent.2019.06.027.

Mangano, C.; Luongo, F.; Migliario, M.; Mortellaro, C.; Mangano, F.G. Combining Intraoral Scans, Cone Beam Computed Tomography and Face Scans: The Virtual Patient. J Craniofac Surg 2018, 29, 2241-2246, doi:10.1097/SCS.0000000000004485.

Joda, T.; Gallucci, G.O. The virtual patient in dental medicine. Clin Oral Implants Res 2015, 26, 725-726, doi:10.1111/clr.12379.

Joda, T.; Bragger, U.; Gallucci, G. Systematic literature review of digital three-dimensional superimposition techniques to create virtual dental patients. Int J Oral Maxillofac Implants 2015, 30, 330-337, doi:10.11607/jomi.3852.

Ba-Hattab, R.; Barhom, N.; Osman, S.A.A.; Naceur, I.; Odeh, A.; Asad, A.; Al-Najdi, S.A.R.N.; Ameri, E.; Daer, A.; Da Silva, R.L.B., et al. Detection of Periapical Lesions on Panoramic Radiographs Using Deep Learning. Appl Sci 2023, 13, 1516, doi:10.3390/app13031516

Schwendicke, F.; Samek, W.; Krois, J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res 2020, 99, 769-774, doi:10.1177/0022034520915714.

Cortes, A.R.; Pinheiro, L.R.; Umetsubo, O.S.; Arita, E.S.; Cavalcanti, M.G. Assessment of implant-related treatment with edited three-dimensional reconstructed images from cone-beam computerized tomography: a technical note. J Oral Implantol 2014, 40, 729-732, doi:10.1563/AAID-JOI-D-12-00295.

Ayres, A.P.; Teixeira-Neto, A.D.; Cortes, A.R.G. Digital Workflow in Periodontology. In Digital Dentistry: A Step-by-Step Guide and Case Atlas, Cortes, A.R.G., Ed. John Wiley & Sons Ltd.: Hoboken, NJ, 2022; 10.1002/9781119852025.ch5pp. 185-196.

No-Cortes, J.; Ayres, A.P.; Son, A.; Lima, J.F.; Markarian, R.A.; da Silva, R.L.B.; Kim, J.H.; Kimura, R.N.; Cortes, A.R.G. Computer-aided design expertise affects digital wax patterns of CAD/CAM laminate veneers more than single crowns. Int J Comput Dent 2022, 25, 361-368, doi:10.3290/j.ijcd.b3555819.

Pinhata-Baptista, O.H.; Goncalves, R.N.; Gialain, I.O.; Cavalcanti, M.G.P.; Tateno, R.Y.; Cortes, A.R.G. Three dimensionally printed surgical guides for removing fixation screws from onlay bone grafts in flapless implant surgeries. J Prosthet Dent 2020, 123, 791-794, doi:10.1016/j.prosdent.2019.05.022.

Choi, I.G.G.; Pinhata-Baptista, O.H.; Ferraco, R.; Kim, J.H.; Abdala Junior, R.; Arita, E.S.; Cortes, A.R.G.; Ackerman, J.L. Correlation among alveolar bone assessments provided by CBCT, micro-CT, and 14 T MRI. Dentomaxillofac Radiol 2022, 51, 20210243, doi:10.1259/dmfr.20210243.

Gialain, I.O.; Pinhata-Baptista, O.H.; Cavalcanti, M.G.P.; Cortes, A.R.G. Computer-Aided Design/Computer-Aided Manufacturing Milling of Allogeneic Blocks Following Three-Dimensional Maxillofacial Graft Planning. J Craniofac Surg 2019, 30, e413-e415, doi:10.1097/SCS.0000000000005353.





How to Cite

Ayres, A. P., Stival Correa , D., de Moura e Costa , A. J. ., Pradíes, G. ., & Rodriguez Gonzalez Côrtes, A. (2024). The Use of Artificial Intelligence to Create a Virtual Patient for Oral and Maxillofacial Surgical Planning. Scientific Letters, 1(1), 6.



Research Articles

Most read articles by the same author(s)