MDMA and tramadol or tapentadol co-administration causes serotonin-independent neurological damage

Authors

  • Juliana Faria UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU) https://orcid.org/0000-0001-7753-0219
  • Joana Barbosa Associate Laboratory i4HB – Institute for Health and Bioeconomy, University Institute of Health Sciences – CESPU, 4585-116 Gandra, Portugal; UCIBIO – Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal https://orcid.org/0000-0003-2236-1029
  • Odília Queirós UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences-CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal; https://orcid.org/0000-0001-5912-3409
  • Ricardo Jorge Dinis-Oliveira Associate Laboratory i4HB – Institute for Health and Bioeconomy, University Institute of Health Sciences – CESPU, 4585-116 Gandra, Portugal; UCIBIO – Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; FOREN – Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136 Lisbon https://orcid.org/0000-0001-7430-6297

DOI:

https://doi.org/10.48797/sl.2025.277

Keywords:

MDMA, tramadol, tapentadol, serotonin, in vitro, acute neurotoxicity

Abstract

The simultaneous consumption and misuse of different drugs, including 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) and opioids, raise concerns about fatal intoxications, as a result of increased serotonin levels. However, research on the simultaneous consumption of MDMA and opioids is limited. This study aimed to evaluate the toxic effect of the simultaneous exposure of the undifferentiated human SH-SY5Y neuroblastoma cell line to MDMA and tramadol or MDMA and tapentadol, focusing on serotonin toxicity. After a 48-hour exposure to the mixtures, there was a significant decrease in cell viability linked to an increase in oxidative stress, alterations in mitochondrial membrane potential, and an increase in caspase-3 activity. Additionally, increased intracellular glucose levels and changes in the expression of enzymes involved in energetic metabolism were observed. However, serotonin levels did not significantly increase compared with the exposure to MDMA alone. Tramadol or tapentadol exposure did not cause a significant increase in serotonin levels compared with non-treated cells. Then, serotonergic toxicity may not be associated with the damage observed. Further studies are needed to better understand the toxicity deriving from the simultaneous exposure to these drugs. The results additionally underlined the need for a careful prescription of tramadol and tapentadol.

References

Beakley, B.D.; Kaye, A.M.; Kaye, A.D. Tramadol, Pharmacology, Side Effects, and Serotonin Syndrome: A Review. Pain Physician 2015, 18, 395-400.

Pilgrim, J.L.; Gerostamoulos, D.; Drummer, O.H. Deaths involving serotonergic drugs. Forensic science international 2010, 198, 110-117, doi:10.1016/j.forsciint.2010.01.014.

Pilgrim, J.L.; Gerostamoulos, D.; Drummer, O.H. Deaths involving contraindicated and inappropriate combinations of serotonergic drugs. Int J Legal Med 2011, 125, 803-815, doi:10.1007/s00414-010-0536-3.

Barbosa, J.; Leal, S.; Pereira, F.C.; Dinis-Oliveira, R.J.; Faria, J. Tramadol and Tapentadol Induce Conditioned Place Preference with a Differential Impact on Rewarding Memory and Incubation of Craving. Pharmaceuticals (Basel) 2023, 16, doi:10.3390/ph16010086.

Dunkley, E.J.; Isbister, G.K.; Sibbritt, D.; Dawson, A.H.; Whyte, I.M. The Hunter Serotonin Toxicity Criteria: simple and accurate diagnostic decision rules for serotonin toxicity. QJM 2003, 96, 635-642.

Barbosa, D.J.; Capela, J.P.; Silva, R.; Ferreira, L.M.; Branco, P.S.; Fernandes, E.; Bastos, M.L.; Carvalho, F. "Ecstasy"-induced toxicity in SH-SY5Y differentiated cells: role of hyperthermia and metabolites. Archives of toxicology 2014, 88, 515-531, doi:10.1007/s00204-013-1147-9.

Barbosa, D.J.; Capela, J.P.; Silva, R.; Vilas-Boas, V.; Ferreira, L.M.; Branco, P.S.; Fernandes, E.; Bastos Mde, L.; Carvalho, F. The mixture of "ecstasy" and its metabolites is toxic to human SH-SY5Y differentiated cells at in vivo relevant concentrations. Archives of toxicology 2014, 88, 455-473, doi:10.1007/s00204-013-1120-7.

Erritzoe, D.; Frokjaer, V.G.; Holst, K.K.; Christoffersen, M.; Johansen, S.S.; Svarer, C.; Madsen, J.; Rasmussen, P.M.; Ramsoy, T.; Jernigan, T.L., et al. In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and hallucinogen users. Arch Gen Psychiatry 2011, 68, 562-576, doi:10.1001/archgenpsychiatry.2011.56.

Hermansen, S.K.; Christoffersen, D.J. Common opioids and stimulants in autopsy and DUID cases: A comparison of measured concentrations. Forensic Sci Int 2022, 338, 111387, doi:10.1016/j.forsciint.2022.111387.

Ter Laak, T.L.; Emke, E.; Dolot, N.; van Loon, E.E.; van der Kooi, M.M.E.; van Asten, A.C.; de Voogt, P. Mapping consumptions and market size of cocaine, amphetamine and MDMA through wastewater analysis: A Dutch case study. Addiction 2025, 120, 116-125, doi:10.1111/add.16649.

Vasan, S.; Murray, B.P.; Olango, G.J. Amphetamine Toxicity. In StatPearls, Treasure Island (FL), 2025.

Costa, G.; Golembiowska, K. Neurotoxicity of MDMA: Main effects and mechanisms. Exp Neurol 2022, 347, 113894, doi:10.1016/j.expneurol.2021.113894.

Robledo, P. Cannabinoids, opioids and MDMA: neuropsychological interactions related to addiction. Curr Drug Targets 2010, 11, 429-439.

Palamar, J.J. Tusi: a new ketamine concoction complicating the drug landscape. Am J Drug Alcohol Abuse 2023, 49, 546-550, doi:10.1080/00952990.2023.2207716.

Senta, I.; Krizman-Matasic, I.; Kostanjevecki, P.; Gonzalez-Marino, I.; Rodil, R.; Quintana, J.B.; Mikac, I.; Terzic, S.; Ahel, M. Assessing the impact of a major electronic music festival on the consumption patterns of illicit and licit psychoactive substances in a Mediterranean city using wastewater analysis. Sci Total Environ 2023, 892, 164547, doi:10.1016/j.scitotenv.2023.164547.

Bishop, N.; Jones-Lepp, T.; Margetts, M.; Sykes, J.; Alvarez, D.; Keil, D.E. Wastewater-based epidemiology pilot study to examine drug use in the Western United States. Sci Total Environ 2020, 745, 140697, doi:10.1016/j.scitotenv.2020.140697.

Kjaer, T.L.; Hindersson, P.; Bentzen, J.R.; Rasmussen, H.H.; Breindahl, T. Drug Use during Incarceration: A Comprehensive Quality and Prevalence Study in Three Danish Prisons. Subst Use Misuse 2025, 60, 155-167, doi:10.1080/10826084.2024.2421813.

Sun, R.; Sauda, T.H.; Hoopsick, R.A. Unmet needs and harm reduction preferences of syringe services program participants: differences by co-use of illicit opioids and methamphetamine. Harm Reduct J 2024, 21, 119, doi:10.1186/s12954-024-01038-2.

Papaseit, E.; Perez-Mana, C.; Torrens, M.; Farre, A.; Poyatos, L.; Hladun, O.; Sanvisens, A.; Muga, R.; Farre, M. MDMA interactions with pharmaceuticals and drugs of abuse. Expert Opin Drug Metab Toxicol 2020, 16, 357-369, doi:10.1080/17425255.2020.1749262.

Franco, D.M.; Ali, Z.; Levine, B.; Middleberg, R.A.; Fowler, D.R. Case report of a fatal intoxication by Nucynta. Am J Forensic Med Pathol 2014, 35, 234-236, doi:10.1097/PAF.0b013e3182887804.

Raffa, R.B.; Buschmann, H.; Christoph, T.; Eichenbaum, G.; Englberger, W.; Flores, C.M.; Hertrampf, T.; Kogel, B.; Schiene, K.; Strassburger, W., et al. Mechanistic and functional differentiation of tapentadol and tramadol. Expert Opin Pharmacother 2012, 13, 1437-1449, doi:10.1517/14656566.2012.696097.

Tzschentke, T.M.; Christoph, T.; Kogel, B.; Schiene, K.; Hennies, H.H.; Englberger, W.; Haurand, M.; Jahnel, U.; Cremers, T.I.; Friderichs, E., et al. (-)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (tapentadol HCl): a novel mu-opioid receptor agonist/norepinephrine reuptake inhibitor with broad-spectrum analgesic properties. J Pharmacol Exp Ther 2007, 323, 265-276, doi:10.1124/jpet.107.126052.

Walczyk, H.; Liu, C.H.; Alafris, A.; Cohen, H. Probable Tapentadol-Associated Serotonin Syndrome After Overdose. Hosp Pharm 2016, 51, 320-327, doi:10.1310/hpj5104-320.

Faria, J.; Barbosa, J.; Queiros, O.; Moreira, R.; Carvalho, F.; Dinis-Oliveira, R.J. Comparative study of the neurotoxicological effects of tramadol and tapentadol in SH-SY5Y cells. Toxicology 2016, 359-360, 1-10, doi:10.1016/j.tox.2016.06.010.

Ferreira, P.S.; Nogueira, T.B.; Costa, V.M.; Branco, P.S.; Ferreira, L.M.; Fernandes, E.; Bastos, M.L.; Meisel, A.; Carvalho, F.; Capela, J.P. Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells. Toxicology letters 2013, 216, 159-170, doi:10.1016/j.toxlet.2012.11.015.

Dias da Silva, D.; Carmo, H.; Silva, E. The risky cocktail: what combination effects can we expect between ecstasy and other amphetamines? Archives of toxicology 2013, 87, 111-122, doi:10.1007/s00204-012-0929-9.

Capela, J.P.; da Costa Araujo, S.; Costa, V.M.; Ruscher, K.; Fernandes, E.; Bastos Mde, L.; Dirnagl, U.; Meisel, A.; Carvalho, F. The neurotoxicity of hallucinogenic amphetamines in primary cultures of hippocampal neurons. Neurotoxicology 2013, 34, 254-263, doi:10.1016/j.neuro.2012.09.005.

da Silva, D.D.; Silva, E.; Carmo, H. Combination effects of amphetamines under hyperthermia - the role played by oxidative stress. Journal of applied toxicology : JAT 2014, 34, 637-650, doi:10.1002/jat.2889.

Yang, M.; Zhong, J.; Zhao, M.; Wang, J.; Gu, Y.; Yuan, X.; Sang, J.; Huang, C. Overexpression of nuclear apoptosis-inducing factor 1 altered the proteomic profile of human gastric cancer cell MKN45 and induced cell cycle arrest at G1/S phase. PloS one 2014, 9, e100216, doi:10.1371/journal.pone.0100216.

Pfefferle, A.D.; Warner, L.R.; Wang, C.W.; Nielsen, W.J.; Babbitt, C.C.; Fedrigo, O.; Wray, G.A. Comparative expression analysis of the phosphocreatine circuit in extant primates: Implications for human brain evolution. Journal of human evolution 2011, 60, 205-212, doi:10.1016/j.jhevol.2010.10.004.

Rohm, B.; Holik, A.K.; Somoza, M.M.; Pignitter, M.; Zaunschirm, M.; Ley, J.P.; Krammer, G.E.; Somoza, V. Nonivamide, a capsaicin analog, increases dopamine and serotonin release in SH-SY5Y cells via a TRPV1-independent pathway. Mol Nutr Food Res 2013, 57, 2008-2018, doi:10.1002/mnfr.201200846.

Costa, I.; Carvalho, F.; Magalhaes, T.; Guedes de Pinho, P.; Silvestre, R.; Dinis-Oliveira, R.J. Promising blood-derived biomarkers for estimation of the postmortem interval. Toxicol Res 2015, 4(6), 1443-1452.

Costa, I.; Oliveira, A.; Guedes de Pinho, P.; Teixeira, H.M.; Moreira, R.; Carvalho, F.; Dinis-Oliveira, R.J. Postmortem redistribution of tramadol and O-desmethyltramadol. J Anal Toxicol 2013, 37, 670-675, doi:10.1093/jat/bkt084.

Kemp, W.; Schlueter, S.; Smalley, E. Death due to apparent intravenous injection of tapentadol. J Forensic Sci 2013, 58, 288-291, doi:10.1111/j.1556-4029.2012.02299.x.

Shadnia, S.; Soltaninejad, K.; Heydari, K.; Sasanian, G.; Abdollahi, M. Tramadol intoxication: a review of 114 cases. Hum Exp Toxicol 2008, 27, 201-205, doi:10.1177/0960327108090270.

Bruce, R.D.; Winkle, P.; Custodio, J.M.; Wei, X.; Rhee, M.S.; Kearney, B.P.; Ramanathan, S.; Friedland, G.H. Investigation of the interactions between methadone and elvitegravir-cobicistat in subjects receiving chronic methadone maintenance. Antimicrob Agents Chemother 2013, 57, 6154-6157, doi:10.1128/AAC.01229-13.

Perez-Alvarez, S.; Cuenca-Lopez, M.D.; de Mera, R.M.; Puerta, E.; Karachitos, A.; Bednarczyk, P.; Kmita, H.; Aguirre, N.; Galindo, M.F.; Jordan, J. Methadone induces necrotic-like cell death in SH-SY5Y cells by an impairment of mitochondrial ATP synthesis. Biochim Biophys Acta 2010, 1802, 1036-1047, doi:10.1016/j.bbadis.2010.07.024.

Nazarzadeh, M.; Bidel, Z.; Carson, K.V. The association between tramadol hydrochloride misuse and other substances use in an adolescent population: Phase I of a prospective survey. Addict Behav 2014, 39, 333-337, doi:10.1016/j.addbeh.2013.09.013.

Di Daniel, E.; Mudge, A.W.; Maycox, P.R. Comparative analysis of the effects of four mood stabilizers in SH-SY5Y cells and in primary neurons. Bipolar disorders 2005, 7, 33-41, doi:10.1111/j.1399-5618.2004.00164.x.

Hong, M.S.; Hong, S.J.; Barhoumi, R.; Burghardt, R.C.; Donnelly, K.C.; Wild, J.R.; Venkatraj, V.; Tiffany-Castiglioni, E. Neurotoxicity induced in differentiated SK-N-SH-SY5Y human neuroblastoma cells by organophosphorus compounds. Toxicology and applied pharmacology 2003, 186, 110-118.

Valdiglesias, V.; Costa, C.; Sharma, V.; Kilic, G.; Pasaro, E.; Teixeira, J.P.; Dhawan, A.; Laffon, B. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 2013, 57, 352-361, doi:10.1016/j.fct.2013.04.010.

Xie, H.R.; Hu, L.S.; Li, G.Y. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease. Chinese medical journal 2010, 123, 1086-1092.

Korecka, J.A.; van Kesteren, R.E.; Blaas, E.; Spitzer, S.O.; Kamstra, J.H.; Smit, A.B.; Swaab, D.F.; Verhaagen, J.; Bossers, K. Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PloS one 2013, 8, e63862, doi:10.1371/journal.pone.0063862.

Felim, A.; Herrera, G.; Neudorffer, A.; Blanco, M.; O'Connor, J.E.; Largeron, M. Synthesis and in vitro cytotoxicity profile of the R-enantiomer of 3,4-dihydroxymethamphetamine (R-(-)-HHMA): comparison with related catecholamines. Chem Res Toxicol 2010, 23, 211-219, doi:10.1021/tx9003374.

Capela, J.P.; Carmo, H.; Remiao, F.; Bastos, M.L.; Meisel, A.; Carvalho, F. Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 2009, 39, 210-271, doi:10.1007/s12035-009-8064-1.

Mahmoudi-Nejad, S.; Ahmadi, S.; Hassan-Nejhad, M.; Azimi, M.; Dadvand, H.; Bagheri, M. Zinc Supplementation Reduces ROS Production and Prevents MDMA-Induced Apoptosis in TM3 Leydig Cells via the Inhibition of Pro-Apoptotic Proteins. Biol Trace Elem Res 2024, 10.1007/s12011-024-04302-5, doi:10.1007/s12011-024-04302-5.

Hosseini, A.; Shetab-Boushehri, S.M.; Shetab-Boushehri, S.V. Evaluation of Cytotoxic, Necrotic, Apoptotic, and Autophagic Effects of Methamphetamine and 3,4-Methylenedioxymethamphetamine on U-87 MG (Glial) and B104-1-1 (Neuronal) Cell Lines. Neurotox Res 2022, 40, 1499-1515, doi:10.1007/s12640-022-00543-1.

Sogos, V.; Caria, P.; Porcedda, C.; Mostallino, R.; Piras, F.; Miliano, C.; De Luca, M.A.; Castelli, M.P. Human Neuronal Cell Lines as An In Vitro Toxicological Tool for the Evaluation of Novel Psychoactive Substances. Int J Mol Sci 2021, 22, doi:10.3390/ijms22136785.

Taghizadeh, G.; Mehdizadeh, H.; Lavasani, H.; Hosseinzadeh Ardakani, Y.; Foroumadi, A.; Halvaei Khankahdani, Z.; Moshtagh, A.; Pourahmad, J.; Sharifzadeh, M.; Rouini, M.R. Dose concentration and spatial memory and brain mitochondrial function association after 3,4-methylenedioxymethamphetamine (MDMA) administration in rats. Arch Toxicol 2020, 94, 911-925, doi:10.1007/s00204-020-02673-x.

Jiang, X.R.; Dryhurst, G. Inhibition of the alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase complexes by a putative aberrant metabolite of serotonin, tryptamine-4,5-dione. Chem Res Toxicol 2002, 15, 1242-1247.

Alves, E.; Binienda, Z.; Carvalho, F.; Alves, C.J.; Fernandes, E.; de Lourdes Bastos, M.; Tavares, M.A.; Summavielle, T. Acetyl-L-carnitine provides effective in vivo neuroprotection over 3,4-methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the adolescent rat brain. Neuroscience 2009, 158, 514-523, doi:10.1016/j.neuroscience.2008.10.041.

Rusyniak, D.E.; Tandy, S.L.; Hekmatyar, S.K.; Mills, E.; Smith, D.J.; Bansal, N.; MacLellan, D.; Harper, M.E.; Sprague, J.E. The role of mitochondrial uncoupling in 3,4-methylenedioxymethamphetamine-mediated skeletal muscle hyperthermia and rhabdomyolysis. J Pharmacol Exp Ther 2005, 313, 629-639, doi:10.1124/jpet.104.079236.

Zhuo, H.Q.; Huang, L.; Huang, H.Q.; Cai, Z. Effects of chronic tramadol exposure on the zebrafish brain: a proteomic study. J Proteomics 2012, 75, 3351-3364, doi:10.1016/j.jprot.2012.03.038.

Streck, E.L.; Amboni, G.; Scaini, G.; Di-Pietro, P.B.; Rezin, G.T.; Valvassori, S.S.; Luz, G.; Kapczinski, F.; Quevedo, J. Brain creatine kinase activity in an animal model of mania. Life sciences 2008, 82, 424-429, doi:10.1016/j.lfs.2007.11.026.

Carrera, P.; Iyer, V.N. Profound hypoglycemia with ecstasy intoxication. Case Rep Emerg Med 2015, 2015, 483153, doi:10.1155/2015/483153.

Soto-Montenegro, M.L.; Vaquero, J.J.; Arango, C.; Ricaurte, G.; Garcia-Barreno, P.; Desco, M. Effects of MDMA on blood glucose levels and brain glucose metabolism. Eur J Nucl Med Mol Imaging 2007, 34, 916-925, doi:10.1007/s00259-006-0262-8.

Gramsbergen, J.B.; Cumming, P. Serotonin mediates rapid changes of striatal glucose and lactate metabolism after systemic 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") administration in awake rats. Neurochemistry international 2007, 51, 8-15, doi:10.1016/j.neuint.2007.03.004.

Fournier, J.P.; Azoulay, L.; Yin, H.; Montastruc, J.L.; Suissa, S. Tramadol use and the risk of hospitalization for hypoglycemia in patients with noncancer pain. JAMA internal medicine 2015, 175, 186-193, doi:10.1001/jamainternmed.2014.6512.

Choi, S.B.; Jang, J.S.; Park, S. Tramadol enhances hepatic insulin sensitivity via enhancing insulin signaling cascade in the cerebral cortex and hypothalamus of 90% pancreatectomized rats. Brain Res Bull 2005, 67, 77-86, doi:10.1016/j.brainresbull.2005.05.029.

Cheng, J.T.; Liu, I.M.; Chi, T.C.; Tzeng, T.F.; Lu, F.H.; Chang, C.J. Plasma glucose-lowering effect of tramadol in streptozotocin-induced diabetic rats. Diabetes 2001, 50, 2815-2821, doi:10.2337/diabetes.50.12.2815.

Gillman, P.K. A review of serotonin toxicity data, implications for the mechanisms of antidepressant drug action. Biol Psychiatry 2006, 59, 1046-1051,doi:10.1016/j.biopsych.2005.11.016.

Grond, S.; Sablotzki, A. Clinical pharmacology of tramadol. Clin Pharmacokinet 2004, 43, 879-923.

Tzschentke, T.M.; Christoph, T.; Kogel, B.Y. The mu-opioid receptor agonist/noradrenaline reuptake inhibition (MOR-NRI) concept in analgesia: the case of tapentadol. CNS Drugs 2014, 28, 319-329, doi:10.1007/s40263-014-0151-9.

Soares-Cardoso, C.; Leal, S.; Sa, S.I.; Dantas-Barros, R.; Dinis-Oliveira, R.J.; Faria, J.; Barbosa, J. Unraveling the Hippocampal Molecular and Cellular Alterations behind Tramadol and Tapentadol Neurobehavioral Toxicity. Pharmaceuticals (Basel) 2024, 17, doi:10.3390/ph17060796.

Soares-Cardoso, C.; Leal, S.; Sa, S.I.; Dantas-Barros, R.; Dinis-Oliveira, R.J.; Faria, J.; Barbosa, J. Unraveling the Hippocampal Molecular and Cellular Alterations behind Tramadol and Tapentadol Neurobehavioral Toxicity. Pharmaceuticals (Basel) 2024, 17, doi:10.3390/ph17060796.

Sansone, R.A.; Sansone, L.A. Tramadol: seizures, serotonin syndrome, and coadministered antidepressants. Psychiatry (Edgmont) 2009, 6, 17-21.

Ryan, N.M.; Isbister, G.K. Tramadol overdose causes seizures and respiratory depression but serotonin toxicity appears unlikely. Clinical toxicology 2015, 53, 545-550, doi:10.3109/15563650.2015.1036279.

Barbosa, J.; Faria, J.; Queiros, O.; Moreira, R.; Carvalho, F.; Dinis-Oliveira, R.J. Comparative metabolism of tramadol and tapentadol: a toxicological perspective. Drug Metab Rev 2016, 48, 577-592, doi:10.1080/03602532.2016.1229788.

Jamali, B.; Sheikholeslami, B.; Hosseinzadeh Ardakani, Y.; Lavasani, H.; Rouini, M.R. Evaluation of the Ecstasy influence on tramadol and its main metabolite plasma concentration in rats. Drug Metab Pers Ther 2017, 32, 137-145, doi:10.1515/dmpt-2017-0018.

Faria, J.; Barbosa, J.; Moreira, R.; Queiros, O.; Carvalho, F.; Dinis-Oliveira, R.J. Comparative pharmacology and toxicology of tramadol and tapentadol. Eur J Pain 2018, 22, 827-844, doi:10.1002/ejp.1196.

Sheikholeslami, B.; Tootoonchi, Z.; Lavasani, H.; Hosseinzadeh Ardakani, Y.; Rouini, M. Investigation of MDMA Inhibitory Effect on CytochromeP450 3A4 in Isolated Perfused Rat Liver Model Using Tramadol. Adv Pharm Bull 2021, 11, 530-536, doi:10.34172/apb.2021.061.

Bickel, J.; Muller, A.; Jungen, H.; Szewczyk, A.; Teske, J.; Kupper, U.; Andresen-Streichert, H.; Ondruschka, B.; Iwersen-Bergmann, S. Post mortem chiral analysis of MDMA and MDA in human blood and hair. Forensic Sci Int 2024, 364, 112226, doi:10.1016/j.forsciint.2024.112226.

Cover SL277

Downloads

Published

2025-01-21

How to Cite

Faria, J., Barbosa, J., Queirós , O. ., & Dinis-Oliveira , R. J. (2025). MDMA and tramadol or tapentadol co-administration causes serotonin-independent neurological damage . Scientific Letters, 1(1), 3. https://doi.org/10.48797/sl.2025.277

Issue

Section

Research Articles

Most read articles by the same author(s)