Targeting p31comet to Enhance Cisplatin-induced Cytotoxicity in Oral Squamous Cell Carcinoma Cells
DOI:
https://doi.org/10.48797/sl.2024.121Keywords:
p31comet, cisplatin, combination therapy, cancer therapy, oral squamous cell carcinomaAbstract
p31comet plays a crucial role in silencing the spindle assembly checkpoint during mitosis. This study aimed to investigate whether p31comet knockdown could enhance cisplatin-induced cytotoxicity in oral cancer cells. We assessed p31comet expression in oral squamous cell carcinoma (OSCC) cells and examined the impact of p31comet knockdown, cisplatin treatment, and their combination on OSCC cell viability and colony formation ability. Our findings indicated an upregulation of p31comet at both mRNA and protein levels in OSCC cells compared with non-cancer cells. Knockdown of p31comet amplified the inhibitory effects of cisplatin on OSCC cell viability and colony formation, particularly in cells more resistant to cisplatin. This suggests that exploring the combination of p31comet inhibition and cisplatin could be a potentially promising strategy to enhance sensitivity of oral cancer cells to cisplatin.
References
Patel, B. V.; Hotaling, J.M. Impact of Chemotherapy on Subsequent Generations. Urol. Oncol. Semin. Orig. Investig. 2020, 38, 10–13, doi:10.1016/j.urolonc.2019.02.011.
Ghosh, S. Cisplatin: The First Metal Based Anticancer Drug. Bioorg. Chem. 2019, 88, 102925, doi:10.1016/j.bioorg.2019.102925.
Alqahtani, F.Y.; Aleanizy, F.S.; El Tahir, E.; Alkahtani, H.M.; AlQuadeib, B.T. Paclitaxel. Profiles Drug Subst. Excipients Relat. Methodol. 2019, 44, 205–238, doi:10.1016/bs.podrm.2018.11.001.
Zhang, J.; Ye, Z.; Tew, K.D.; Townsend, D.M. Cisplatin Chemotherapy and Renal Function. In; 2021; pp. 305–327.
Chow, L.Q.M. Head and Neck Cancer. N. Engl. J. Med. 2020, 382, 60–72, doi:10.1056/NEJMra1715715.
Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and Neck Squamous Cell Carcinoma. Nat. Rev. Dis. Prim. 2020, 6, 92, doi:10.1038/s41572-020-00224-3.
Alfouzan, A.F. Radiation Therapy in Head and Neck Cancer. Saudi Med. J. 2021, 42, 247–254, doi:10.15537/smj.2021.42.3.20210660.
Bos, T.; Ratti, J.A.; Harada, H. Targeting Stress-Response Pathways and Therapeutic Resistance in Head and Neck Cancer. Front. Oral Heal. 2021, 2, doi:10.3389/froh.2021.676643.
Cheng, Y.; Li, S.; Gao, L.; Zhi, K.; Ren, W. The Molecular Basis and Therapeutic Aspects of Cisplatin Resistance in Oral Squamous Cell Carcinoma. Front. Oncol. 2021, 11, doi:10.3389/fonc.2021.761379.
Cocetta, V.; Ragazzi, E.; Montopoli, M. Mitochondrial Involvement in Cisplatin Resistance. Int. J. Mol. Sci. 2019, 20, 3384, doi:10.3390/ijms20143384.
Henriques, A.C.A.C.; Ribeiro, D.; Pedrosa, J.; Sarmento, B.; Silva, P.M.A.P.M.A.; Bousbaa, H. Mitosis Inhibitors in Anticancer Therapy: When Blocking the Exit Becomes a Solution. Cancer Lett. 2019, 440–441, 64–81, doi:10.1016/j.canlet.2018.10.005.
Topham, C.H.; Taylor, S.S. Mitosis and Apoptosis: How Is the Balance Set? Curr. Opin. Cell Biol. 2013, 25, 780–785, doi:10.1016/j.ceb.2013.07.003.
Dumontet, C.; Jordan, M.A. Microtubule-Binding Agents: A Dynamic Field of Cancer Therapeutics. Nat. Rev. Drug Discov. 2010, 9, 790–803, doi:10.1038/nrd3253.
Silva, P.M.A.; Ribeiro, N.; Lima, R.T.; Andrade, C.; Diogo, V.; Teixeira, J.; Florindo, C.; Tavares, Á.; Vasconcelos, M.H.; Bousbaa, H. Suppression of Spindly Delays Mitotic Exit and Exacerbates Cell Death Response of Cancer Cells Treated with Low Doses of Paclitaxel. Cancer Lett. 2017, 394, 33–42, doi:10.1016/j.canlet.2017.02.024.
Ma, H.T.; Chan, Y.Y.; Chen, X.; On, K.F.; Poon, R.Y.C. Depletion of P31comet Protein Promotes Sensitivity to Antimitotic Drugs. J. Biol. Chem. 2012, 287, 21561–21569, doi:10.1074/jbc.M112.364356.
Henriques, A.C.; Silva, P.M.A.; Sarmento, B.; Bousbaa, H. Antagonizing the Spindle Assembly Checkpoint Silencing Enhances Paclitaxel and Navitoclax-Mediated Apoptosis with Distinct Mechanistic. Sci. Rep. 2021, 11, 4139, doi:10.1038/s41598-021-83743-7.
Silva, P.M.A.; Delgado, M.L.; Ribeiro, N.; Florindo, C.; Tavares, Á.A.; Ribeiro, D.; Lopes, C.; Amaral, B.; Bousbaa, H.; Monteiro, L.S. Spindly and Bub3 Expression in Oral Cancer: Prognostic and Therapeutic Implications. Oral Dis. 2019, 25, 1291–1301, doi:10.1111/odi.13089.
Belur Nagaraj, A.; Kovalenko, O.; Avelar, R.; Joseph, P.; Brown, A.; Surti, A.; Mantilla, S.; DiFeo, A. Mitotic Exit Dysfunction through the Deregulation of APC/C Characterizes Cisplatin-Resistant State in Epithelial Ovarian Cancer. Clin. Cancer Res. 2018, 24, 4588–4601, doi:10.1158/1078-0432.CCR-17-2885.
Wu, M.; Wang, Y.; Yang, D.; Gong, Y.; Rao, F.; Liu, R.; Danna, Y.; Li, J.; Fan, J.; Chen, J.; et al. A PLK1 Kinase Inhibitor Enhances the Chemosensitivity of Cisplatin by Inducing Pyroptosis in Oesophageal Squamous Cell Carcinoma. EBioMedicine 2019, 41, 244–255, doi:10.1016/j.ebiom.2019.02.012.
Huang, L.; Li, W.; Dai, X.; Zhao, S.; Xu, B.; Wang, F.; Jin, R.-T.; Luo, L.; Wu, L.; Jiang, X.; et al. Biallelic Variants in MAD2L1BP (P31comet) Cause Female Infertility Characterized by Oocyte Maturation Arrest. Elife 2023, 12, doi:10.7554/eLife.85649.
Pagano, F.; Angelini, F.; Castaldo, C.; Picchio, V.; Messina, E.; Sciarretta, S.; Maiello, C.; Biondi-Zoccai, G.; Frati, G.; Meglio, F. di; et al. Normal versus Pathological Cardiac Fibroblast-Derived Extracellular Matrix Differentially Modulates Cardiosphere-Derived Cell Paracrine Properties and Commitment. Stem Cells Int. 2017, 2017, 1–9, doi:10.1155/2017/7396462.
Westhorpe, F.G.; Tighe, A.; Lara-Gonzalez, P.; Taylor, S.S. P31comet-Mediated Extraction of Mad2 from the MCC Promotes Efficient Mitotic Exit. J. Cell Sci. 2011, 124, 3905–3916, doi:10.1242/jcs.093286.
Wang, H.; Ma, Y. β-Elemene Alleviates Cisplatin Resistance in Oral Squamous Cell Carcinoma Cell via Inhibiting JAK2/STAT3 Pathway in Vitro and in Vivo. Cancer Cell Int. 2022, 22, 244, doi:10.1186/s12935-022-02650-7.
Li, J.; Vangundy, Z.; Poi, M. Cisplatin Induced the Expression of SEI1 (TRIP-Br1) Oncogene in Human Oral Squamous Cancer Cell Lines. Anticancer Res. 2020, 40, 67–73, doi:10.21873/anticanres.13926.
De Blasio, A.; Vento, R.; Di Fiore, R. Mcl‐1 Targeting Could Be an Intriguing Perspective to Cure Cancer. J. Cell. Physiol. 2018, 233, 8482–8498, doi:10.1002/jcp.26786.
Griffis, E.R.; Stuurman, N.; Vale, R.D. Spindly, a Novel Protein Essential for Silencing the Spindle Assembly Checkpoint, Recruits Dynein to the Kinetochore. J. Cell Biol. 2007, 177, 1005–1015, doi:10.1083/jcb.200702062.
Habu, T.; Matsumoto, T. P31comet Inactivates the Chemically Induced Mad2-Dependent Spindle Assembly Checkpoint and Leads to Resistance to Anti-Mitotic Drugs. Springerplus 2013, 2, 562, doi:10.1186/2193-1801-2-562.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Patricia M. A. Silva, Ana C. Henriques , João P.N. Silva, Bárbara Pinto , Hassan Bousbaa
This work is licensed under a Creative Commons Attribution 4.0 International License.
In Scientific Letters, articles are published under a CC-BY license (Creative Commons Attribution 4.0 International License), the most open license available. The users can share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material for any purpose, even commercially), as long as they give appropriate credit, provide a link to the license, and indicate if changes were made (read the full text of the license terms and conditions of use).
The author is the owner of the copyright.