Exploring the Clinical Relevance of p31comet in Head and Neck Squamous Cell Carcinoma through UALCAN database analysis

Authors

  • Ana C. Henriques Henriques UNIPRO – Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal https://orcid.org/0000-0002-4951-792X
  • João P. N. Silva UNIPRO – Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal https://orcid.org/0000-0003-4455-4286
  • Bárbara Pinto UNIPRO – Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal https://orcid.org/0000-0002-8804-6104
  • Patricia M. A. Silva UNIPRO – Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal. UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal. https://orcid.org/0000-0002-0694-7321
  • Hassan Bousbaa UNIPRO – Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal https://orcid.org/0000-0002-4006-5779

DOI:

https://doi.org/10.48797/sl.2024.266

Keywords:

Bioinformatics analysis, p31comet, tumorigenesis, prognostic, biomarker, head and neck squamous cell carcinoma

Abstract

The p31comet protein plays a pivotal role in regulating spindle assembly checkpoint silencing and is overexpressed in several cancers, including oral cancer. Despite this, its exact roles in tumorigenesis and its prognostic significance remain unclear. In this study, using the UALCAN cancer database, we analyzed p31comet expression and its correlation with clinical indicators in Head and Neck Squamous Cell Carcinoma (HNSCC). Our findings revealed a significant upregulation of p31comet in HNSCC patients. Interestingly, we observed a positive correlation between p31comet expression and known interactors such as MAD2L1 and TRIP13, as well as regulators of p31comet expression. Furthermore, we found that p31comet expression was notably increased in tumor samples exhibiting alterations in the mTOR pathway and the SWI/SNF chromatin remodeling complexes. Intriguingly, HNSCC patients with high p31comet expression showed a tendency towards better prognosis compared to those with low/medium expression levels. This tendency did not reach statistical significance, likely due to variations in patient cohort sizes within the database. In summary, our findings suggest that increased p31comet expression could be a potential marker for tumor occurrence and metastasis in HNSCC patients, opening avenues for further research to understand its prognostic significance.

References

Peltanova, B.; Raudenska, M.; Masarik, M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Molecular cancer 2019, 18, 63, doi:10.1186/s12943-019-0983-5.

Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nature Reviews Disease Primers 2020, 6, 92, doi:10.1038/s41572-020-00224-3.

Gong, Y.; Bao, L.; Xu, T.; Yi, X.; Chen, J.; Wang, S.; Pan, Z.; Huang, P.; Ge, M. The tumor ecosystem in head and neck squamous cell carcinoma and advances in ecotherapy. Molecular cancer 2023, 22, 68, doi:10.1186/s12943-023-01769-z.

Henriques, A.C.; Ribeiro, D.; Pedrosa, J.; Sarmento, B.; Silva, P.M.A.; Bousbaa, H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. In Cancer letters, Elsevier Ireland Ltd: 2019; Vol. 440-441, pp 64-81.

Kops, G.; Gassmann, R. Crowning the Kinetochore: The Fibrous Corona in Chromosome Segregation. Trends in cell biology 2020, 30, 653-667, doi:10.1016/j.tcb.2020.04.006.

Dou, Z.; Prifti, D.K.; Gui, P.; Liu, X.; Elowe, S.; Yao, X. Recent Progress on the Localization of the Spindle Assembly Checkpoint Machinery to Kinetochores. Cells 2019, 8, doi:10.3390/cells8030278.

Čermák, V.; Dostál, V.; Jelínek, M.; Libusová, L.; Kovář, J.; Rösel, D.; Brábek, J. Microtubule-targeting agents and their impact on cancer treatment. European journal of cell biology 2020, 99, 151075, doi:10.1016/j.ejcb.2020.151075.

Nascimento, A.V.; Singh, A.; Bousbaa, H.; Ferreira, D.; Sarmento, B.; Amiji, M.M. Mad2 checkpoint gene silencing using epidermal growth factor receptor-targeted chitosan nanoparticles in non-small cell lung cancer model. Mol Pharm 2014, 11, 3515-3527, doi:10.1021/mp5002894.

Li, M.; Duan, X.; Xiao, Y.; Yuan, M.; Zhao, Z.; Cui, X.; Wu, D.; Shi, J. BUB1 Is Identified as a Potential Therapeutic Target for Pancreatic Cancer Treatment. Frontiers in public health 2022, 10, 900853, doi:10.3389/fpubh.2022.900853.

Silva, P.M.A.; Bousbaa, H. BUB3, beyond the Simple Role of Partner. Pharmaceutics 2022, 14, doi:10.3390/pharmaceutics14051084.

De Antoni, A.; Pearson, C.G.; Cimini, D.; Canman, J.C.; Sala, V.; Nezi, L.; Mapelli, M.; Sironi, L.; Faretta, M.; Salmon, E.D., et al. The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Current biology : CB 2005, 15, 214-225, doi:10.1016/j.cub.2005.01.038.

Mapelli, M.; Musacchio, A. MAD contortions: conformational dimerization boosts spindle checkpoint signaling. Current opinion in structural biology 2007, 17, 716-725, doi:10.1016/j.sbi.2007.08.011.

Habu, T.; Kim, S.H.; Weinstein, J.; Matsumoto, T. Identification of a MAD2-binding protein, CMT2, and its role in mitosis. The EMBO journal 2002, 21, 6419-6428, doi:10.1093/emboj/cdf659.

Henriques, A.C.; Silva, P.M.A.; Sarmento, B.; Bousbaa, H. The Mad2-Binding Protein p31(comet) as a Potential Target for Human Cancer Therapy. Curr Cancer Drug Targets 2021, 21, 401-415, doi:10.2174/1568009621666210129095726.

Xia, G.; Luo, X.; Habu, T.; Rizo, J.; Matsumoto, T.; Yu, H. Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint. The EMBO journal 2004, 23, 3133-3143, doi:10.1038/sj.emboj.7600322.

Lok, T.M.; Wang, Y.; Xu, W.K.; Xie, S.; Ma, H.T.; Poon, R.Y.C. Mitotic slippage is determined by p31(comet) and the weakening of the spindle-assembly checkpoint. Oncogene 2020, 39, 2819-2834, doi:10.1038/s41388-020-1187-6.

Mapelli, M.; Filipp, F.V.; Rancati, G.; Massimiliano, L.; Nezi, L.; Stier, G.; Hagan, R.S.; Confalonieri, S.; Piatti, S.; Sattler, M., et al. Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. The EMBO journal 2006, 25, 1273-1284, doi:10.1038/sj.emboj.7601033.

Westhorpe, F.G.; Tighe, A.; Lara-Gonzalez, P.; Taylor, S.S. p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J Cell Sci 2011, 124, 3905-3916, doi:10.1242/jcs.093286.

Habu, T.; Matsumoto, T. p31(comet) inactivates the chemically induced Mad2-dependent spindle assembly checkpoint and leads to resistance to anti-mitotic drugs. SpringerPlus 2013, 2, 562, doi:10.1186/2193-1801-2-562.

Eytan, E.; Wang, K.; Miniowitz-Shemtov, S.; Sitry-Shevah, D.; Kaisari, S.; Yen, T.J.; Liu, S.T.; Hershko, A. Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31(comet). Proceedings of the National Academy of Sciences of the United States of America 2014, 111, 12019-12024, doi:10.1073/pnas.1412901111.

Alfieri, C.; Chang, L.; Barford, D. Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature 2018, 559, 274-278, doi:10.1038/s41586-018-0281-1.

Teichner, A.; Eytan, E.; Sitry-Shevah, D.; Miniowitz-Shemtov, S.; Dumin, E.; Gromis, J.; Hershko, A. p31comet Promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, 3187-3192, doi:10.1073/pnas.1100023108.

Habu, T.; Kim, J. Dynein intermediate chain 2c (DNCI2c) complex is essential for exiting Mad2-dependent spindle assembly checkpoint. Biochimica et biophysica acta. Molecular cell research 2021, 1868, 119120, doi:10.1016/j.bbamcr.2021.119120.

Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemporary oncology (Poznan, Poland) 2015, 19, A68-77, doi:10.5114/wo.2014.47136.

Sarangi, P.; Clairmont, C.S.; Galli, L.D.; Moreau, L.A.; D'Andrea, A.D. p31(comet) promotes homologous recombination by inactivating REV7 through the TRIP13 ATPase. Proceedings of the National Academy of Sciences of the United States of America 2020, 117, 26795-26803, doi:10.1073/pnas.2008830117.

Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.; Varambally, S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia (New York, N.Y.) 2017, 19, 649-658, doi:10.1016/j.neo.2017.05.002.

Chen, F.; Chandrashekar, D.S.; Varambally, S.; Creighton, C.J. Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers. Nature communications 2019, 10, 5679, doi:10.1038/s41467-019-13528-0.

Hegemann, B.; Hutchins, J.R.; Hudecz, O.; Novatchkova, M.; Rameseder, J.; Sykora, M.M.; Liu, S.; Mazanek, M.; Lénárt, P.; Hériché, J.K., et al. Systematic phosphorylation analysis of human mitotic protein complexes. Science signaling 2011, 4, rs12, doi:10.1126/scisignal.2001993.

Mo, M.; Arnaoutov, A.; Dasso, M. Phosphorylation of Xenopus p31(comet) potentiates mitotic checkpoint exit. Cell Cycle 2015, 14, 3978-3985, doi:10.1080/15384101.2015.1033590.

Kaisari, S.; Shomer, P.; Ziv, T.; Sitry-Shevah, D.; Miniowitz-Shemtov, S.; Teichner, A.; Hershko, A. Role of Polo-like kinase 1 in the regulation of the action of p31(comet) in the disassembly of mitotic checkpoint complexes. Proceedings of the National Academy of Sciences of the United States of America 2019, 116, 11725-11730, doi:10.1073/pnas.1902970116.

Cuevas-Navarro, A.; Van, R.; Cheng, A.; Urisman, A.; Castel, P.; McCormick, F. The RAS GTPase RIT1 compromises mitotic fidelity through spindle assembly checkpoint suppression. Current biology : CB 2021, 31, 3915-3924.e3919, doi:10.1016/j.cub.2021.06.030.

Hellmuth, S.; Gómez-H, L.; Pendás, A.M.; Stemmann, O. Securin-independent regulation of separase by checkpoint-induced shugoshin–MAD2. Nature 2020, 580, 536-541, doi:10.1038/s41586-020-2182-3.

Ji, J.; Tang, D.; Shen, Y.; Xue, Z.; Wang, H.; Shi, W.; Zhang, C.; Du, G.; Li, Y.; Cheng, Z. P31comet, a member of the synaptonemal complex, participates in meiotic DSB formation in rice. Proceedings of the National Academy of Sciences of the United States of America 2016, 113, 10577-10582, doi:10.1073/pnas.1607334113.

Huang, L.; Li, W.; Dai, X.; Zhao, S.; Xu, B.; Wang, F.; Jin, R.T.; Luo, L.; Wu, L.; Jiang, X., et al. Biallelic variants in MAD2L1BP (p31(comet)) cause female infertility characterized by oocyte maturation arrest. Elife 2023, 12, doi:10.7554/eLife.85649.

Giacopazzi, S.; Vong, D.; Devigne, A.; Bhalla, N. PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions. PLoS genetics 2020, 16, e1008904, doi:10.1371/journal.pgen.1008904.

Balboni, M.; Yang, C.; Komaki, S.; Brun, J.; Schnittger, A. COMET Functions as a PCH2 Cofactor in Regulating the HORMA Domain Protein ASY1. Current biology : CB 2020, 30, 4113-4127.e4116, doi:10.1016/j.cub.2020.07.089.

Setiaputra, D.; Durocher, D. Shieldin - the protector of DNA ends. EMBO Rep 2019, 20, doi:10.15252/embr.201847560.

Biller, M.; Kabir, S.; Boado, C.; Nipper, S.; Saffa, A.; Tal, A.; Allen, S.; Sasanuma, H.; Dréau, D.; Vaziri, C., et al. REV7-p53 interaction inhibits ATM-mediated DNA damage signaling. Cell Cycle 2024, 10.1080/15384101.2024.2333227, 1-14, doi:10.1080/15384101.2024.2333227.

Abdel-Salam, G.M.H.; Hellmuth, S.; Gradhand, E.; Käseberg, S.; Winter, J.; Pabst, A.S.; Eid, M.M.; Thiele, H.; Nürnberg, P.; Budde, B.S., et al. Biallelic MAD2L1BP (p31comet) mutation is associated with mosaic aneuploidy and juvenile granulosa cell tumors. JCI insight 2023, 8, doi:10.1172/jci.insight.170079.

Choi, E.; Zhang, X.; Xing, C.; Yu, H. Mitotic Checkpoint Regulators Control Insulin Signaling and Metabolic Homeostasis. Cell 2016, 166, 567-581, doi:10.1016/j.cell.2016.05.074.

Cayrol, C.; Cougoule, C.; Wright, M. The beta2-adaptin clathrin adaptor interacts with the mitotic checkpoint kinase BubR1. Biochem Biophys Res Commun 2002, 298, 720-730, doi:10.1016/s0006-291x(02)02522-6.

O'Neill, T.J.; Zhu, Y.; Gustafson, T.A. Interaction of MAD2 with the carboxyl terminus of the insulin receptor but not with the IGFIR. Evidence for release from the insulin receptor after activation. The Journal of biological chemistry 1997, 272, 10035-10040, doi:10.1074/jbc.272.15.10035.

Tipton, A.R.; Wang, K.; Link, L.; Bellizzi, J.J.; Huang, H.; Yen, T.; Liu, S.T. BUBR1 and closed MAD2 (C-MAD2) interact directly to assemble a functional mitotic checkpoint complex. The Journal of biological chemistry 2011, 286, 21173-21179, doi:10.1074/jbc.M111.238543.

Brindley, R.L.; Bauer, M.B.; Blakely, R.D.; Currie, K.P.M. An interplay between the serotonin transporter (SERT) and 5-HT receptors controls stimulus-secretion coupling in sympathoadrenal chromaffin cells. Neuropharmacology 2016, 110, 438-448, doi:10.1016/j.neuropharm.2016.08.015.

Koban, F.; Freissmuth, M. The cell cycle protein MAD2 facilitates endocytosis of the serotonin transporter in the neuronal soma. EMBO Rep 2023, 24, e53408, doi:10.15252/embr.202153408.

Schuyler, S.C.; Wu, Y.O.; Chen, H.Y.; Ding, Y.S.; Lin, C.J.; Chu, Y.T.; Chen, T.C.; Liao, L.; Tsai, W.W.; Huang, A., et al. Peptide inhibitors of the anaphase promoting-complex that cause sensitivity to microtubule poison. PloS one 2018, 13, e0198930, doi:10.1371/journal.pone.0198930.

Yun, M.; Han, Y.H.; Yoon, S.H.; Kim, H.Y.; Kim, B.Y.; Ju, Y.J.; Kang, C.M.; Jang, S.H.; Chung, H.Y.; Lee, S.J., et al. p31comet Induces cellular senescence through p21 accumulation and Mad2 disruption. Molecular cancer research : MCR 2009, 7, 371-382, doi:10.1158/1541-7786.Mcr-08-0056.

Shin, H.J.; Park, E.R.; Yun, S.H.; Kim, S.H.; Jung, W.H.; Woo, S.R.; Joo, H.Y.; Jang, S.H.; Chung, H.Y.; Hong, S.H., et al. p31comet-Induced Cell Death Is Mediated by Binding and Inactivation of Mad2. PloS one 2015, 10, e0141523, doi:10.1371/journal.pone.0141523.

Wu, D.; Wang, L.; Yang, Y.; Huang, J.; Hu, Y.; Shu, Y.; Zhang, J.; Zheng, J. MAD2-p31(comet) axis deficiency reduces cell proliferation, migration and sensitivity of microtubule-interfering agents in glioma. Biochem Biophys Res Commun 2018, 498, 157-163, doi:10.1016/j.bbrc.2018.02.011.

Kim, B.C.; Yoo, H.J.; Lee, H.C.; Kang, K.A.; Jung, S.H.; Lee, H.J.; Lee, M.; Park, S.; Ji, Y.H.; Lee, Y.S., et al. Evaluation of premature senescence and senescence biomarkers in carcinoma cells and xenograft mice exposed to single or fractionated irradiation. Oncology reports 2014, 31, 2229-2235, doi:10.3892/or.2014.3069.

Schosserer, M.; Grillari, J.; Breitenbach, M. The Dual Role of Cellular Senescence in Developing Tumors and Their Response to Cancer Therapy. Front Oncol 2017, 7, 278, doi:10.3389/fonc.2017.00278.

Ma, H.T.; Chan, Y.Y.; Chen, X.; On, K.F.; Poon, R.Y. Depletion of p31comet protein promotes sensitivity to antimitotic drugs. The Journal of biological chemistry 2012, 287, 21561-21569, doi:10.1074/jbc.M112.364356.

Henriques, A.C.; Silva, P.M.A.; Sarmento, B.; Bousbaa, H. Antagonizing the spindle assembly checkpoint silencing enhances paclitaxel and Navitoclax-mediated apoptosis with distinct mechanistic. Scientific reports 2021, 11, 4139, doi:10.1038/s41598-021-83743-7.

Henriques, A.C.S., J. P.N.; Pinto, B.; Silva, P. M. A.; Bousbaa, H. Targeting p31comet to Enhance Cisplatin-induced Cytotoxicity in Oral Squamous Cell Carcinoma Cells. Scientific Letters 2024, 1, doi:10.48797/sl.2024.121.

Wu, M.; Wang, Y.; Yang, D.; Gong, Y.; Rao, F.; Liu, R.; Danna, Y.; Li, J.; Fan, J.; Chen, J., et al. A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma. EBioMedicine 2019, 41, 244-255, doi:10.1016/j.ebiom.2019.02.012.

Dey, A.; Varelas, X.; Guan, K.L. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nature reviews. Drug discovery 2020, 19, 480-494, doi:10.1038/s41573-020-0070-z.

Rojo de la Vega, M.; Chapman, E.; Zhang, D.D. NRF2 and the Hallmarks of Cancer. Cancer cell 2018, 34, 21-43, doi:10.1016/j.ccell.2018.03.022.

Bachmann, A.S.; Geerts, D. Polyamine synthesis as a target of MYC oncogenes. The Journal of biological chemistry 2018, 293, 18757-18769, doi:10.1074/jbc.TM118.003336.

Murugan, A.K. mTOR: Role in cancer, metastasis and drug resistance. Seminars in cancer biology 2019, 59, 92-111, doi:10.1016/j.semcancer.2019.07.003.

Ribeiro-Silva, C.; Vermeulen, W.; Lans, H. SWI/SNF: Complex complexes in genome stability and cancer. DNA repair 2019, 77, 87-95, doi:10.1016/j.dnarep.2019.03.007.

Sciarrillo, R.; Wojtuszkiewicz, A.; Assaraf, Y.G.; Jansen, G.; Kaspers, G.J.L.; Giovannetti, E.; Cloos, J. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 2020, 53, 100728, doi:10.1016/j.drup.2020.100728.

Date, D.A.; Burrows, A.C.; Venere, M.; Jackson, M.W.; Summers, M.K. Coordinated regulation of p31(Comet) and Mad2 expression is required for cellular proliferation. Cell cycle (Georgetown, Tex.) 2013, 12, 3824-3832, doi:10.4161/cc.26811.

Teixeira, J.H.; Silva, P.; Faria, J.; Ferreira, I.; Duarte, P.; Delgado, M.L.; Queirós, O.; Moreira, R.; Barbosa, J.; Lopes, C.A., et al. Clinicopathologic significance of BubR1 and Mad2 overexpression in oral cancer. Oral diseases 2015, 21, 713-720, doi:10.1111/odi.12335.

Monteiro, L.; Silva, P.; Delgado, L.; Amaral, B.; Garcês, F.; Salazar, F.; Pacheco, J.J.; Lopes, C.; Bousbaa, H.; Warnakulasuriya, S. Expression of spindle assembly checkpoint proteins BubR1 and Mad2 expression as potential biomarkers of malignant transformation of oral leukoplakia: an observational cohort study. Medicina oral, patologia oral y cirugia bucal 2021, 26, e719-e728, doi:10.4317/medoral.24511.

Banerjee, R.; Liu, M.; Bellile, E.; Schmitd, L.B.; Goto, M.; Hutchinson, M.N.D.; Singh, P.; Zhang, S.; Damodaran, D.P.V.; Nyati, M.K., et al. Phosphorylation of TRIP13 at Y56 induces radiation resistance but sensitizes head and neck cancer to cetuximab. Molecular therapy : the journal of the American Society of Gene Therapy 2022, 30, 468-484, doi:10.1016/j.ymthe.2021.06.009.

Cover SL266

Downloads

Published

2024-07-23

How to Cite

Henriques, A. C. H., Silva , J. P. N. ., Pinto, B., Silva, P. M. A. ., & Bousbaa, H. (2024). Exploring the Clinical Relevance of p31comet in Head and Neck Squamous Cell Carcinoma through UALCAN database analysis. Scientific Letters, 1(1), 9. https://doi.org/10.48797/sl.2024.266

Issue

Section

Reviews

Most read articles by the same author(s)

1 2 > >>