Anti-Spike IgG against COVID-19 three months after the end of the pandemic in Northeast of Portugal
DOI:
https://doi.org/10.48797/sl.2024.269Keywords:
COVID-19; Reinfection; Vaccine efficacy; BoosterAbstract
The emergence of new COVID-19 strains and variants and immune escape from vaccines forces reflection on the need to continue vaccinating the entire population. This study intends to monitor and understand the reinfection in recently vaccinated people. The amount of anti-Spike IgG, the number of vaccine doses, and infections/reinfections in 82 volunteers, three months after the declaration of the end of the COVID-19 pandemic, was evaluated. All participants, asymptomatic at the time, presented IgG, including those who had no infection or vaccination (n = 3). Those vaccinated showed high levels of antibodies, even 36 months after the last booster. There was no significant difference in the immunological status with the type of vaccine, age, and sex, although women and older people had higher median IgG values. A significant positive correlation was observed between vaccine doses and IgG (rs = 0.373; p < 0.001). Women vaccinated before coming into contact with the virus showed higher antibody levels (16607 vs. 6233; p = 0.012). This study suggests women’s immune systems are more effective at fighting the virus. It also supports the effectiveness of vaccines on the humoral response. However, the timing of infections is inconsistent with the expected immunity. Therefore, continuation of booster doses is questionable except for immunocompromised patients.
References
Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239-1242, doi:10.1001/jama.2020.2648.
Kellam, P.; Barclay, W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. J Gen Virol 2020, 101, 791-797, doi:10.1099/jgv.0.001439.
WHO. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. Availabe online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 25 February 2024).
Duro, M.; Duro, I.; Rebelo, I.; Moreno, F.; Pires, M.; Jacinto, S.; Pimentel, M.; Almeida, C.M.N. Pre-vaccination immune response to COVID-19 in a population in Northeast Portugal. Ir J Med Sci 2022, 191, 1951-1958, doi:10.1007/s11845-021-02799-6.
Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J., et al. Antibody Responses to SARS-CoV-2 in Patients With Novel Coronavirus Disease 2019. Clin Infect Dis 2020, 71, 2027-2034, doi:10.1093/cid/ciaa344.
Xiao, A.T.; Gao, C.; Zhang, S. Profile of specific antibodies to SARS-CoV-2: The first report. J Infect 2020, 81, 147-178, doi:10.1016/j.jinf.2020.03.012.
Choe, P.G.; Kang, C.K.; Suh, H.J.; Jung, J.; Song, K.H.; Bang, J.H.; Kim, E.S.; Kim, H.B.; Park, S.W.; Kim, N.J., et al. Waning Antibody Responses in Asymptomatic and Symptomatic SARS-CoV-2 Infection. Emerg Infect Dis 2021, 27, 327-329, doi:10.3201/eid2701.203515.
Dupoirieux, L. COVID-19 Preoperative Blood Tests: What Do They Tell Us about COVID-19 Vaccines? Med Clin Sci 2023, 5, 1-3, doi:10.33425/2690-5191.1074
Decru, B.; Van Elslande, J.; Steels, S.; Van Pottelbergh, G.; Godderis, L.; Van Holm, B.; Bossuyt, X.; Van Weyenbergh, J.; Maes, P.; Vermeersch, P. IgG Anti-Spike Antibodies and Surrogate Neutralizing Antibody Levels Decline Faster 3 to 10 Months After BNT162b2 Vaccination Than After SARS-CoV-2 Infection in Healthcare Workers. Front Immunol 2022, 13, 909910, doi:10.3389/fimmu.2022.909910.
Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.J.A.; Hemmings, O.; O'Byrne, A.; Kouphou, N.; Galao, R.P., et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol 2020, 5, 1598-1607, doi:10.1038/s41564-020-00813-8.
Choe, P.G.; Perera, R.; Park, W.B.; Song, K.H.; Bang, J.H.; Kim, E.S.; Kim, H.B.; Ko, L.W.R.; Park, S.W.; Kim, N.J., et al. MERS-CoV Antibody Responses 1 Year after Symptom Onset, South Korea, 2015. Emerg Infect Dis 2017, 23, 1079-1084, doi:10.3201/eid2307.170310.
Firouzabadi, N.; Ghasemiyeh, P.; Moradishooli, F.; Mohammadi-Samani, S. Update on the effectiveness of COVID-19 vaccines on different variants of SARS-CoV-2. Int Immunopharmacol 2023, 117, 109968, doi:10.1016/j.intimp.2023.109968.
Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A., et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N Engl J Med 2021, 385, e84, doi:10.1056/NEJMoa2114583.
Allen, N.; Brady, M.; Carrion Martin, A.I.; Domegan, L.; Walsh, C.; Houlihan, E.; Kerr, C.; Doherty, L.; King, J.; Doheny, M., et al. SARS-CoV-2 Antibody Testing in Health Care Workers: A Comparison of the Clinical Performance of Three Commercially Available Antibody Assays. Microbiol Spectr 2021, 9, e0039121, doi:10.1128/Spectrum.00391-21.
Muller, L.; Kannenberg, J.; Biemann, R.; Honemann, M.; Ackermann, G.; Jassoy, C. Comparison of the measured values of quantitative SARS-CoV-2 spike antibody assays. J Clin Virol 2022, 155, 105269, doi:10.1016/j.jcv.2022.105269.
Mushtaq, H.A.; Khedr, A.; Koritala, T.; Bartlett, B.N.; Jain, N.K.; Khan, S.A. A review of adverse effects of COVID-19 vaccines. Infez Med 2022, 30, 1-10, doi:10.53854/liim-3001-1.
Oncu, S.; Korkmaz, D. Evaluation of the relationship of treatment and vaccination with prognosis in patients with a diagnosis of COVID-19. Inflammopharmacology 2024, 32, 1817-1826, doi:10.1007/s10787-024-01457-4.
Albalbaki, M.M.; AL-Fawares, O.; Aburayyan, W.; Seder, N.; Al-Sanabra, O.M.; AL-Tahrawe, L.; Shatnawi, M.N. The correlation of gene mutation of coagulopathy cascade with elevated D-dimer levels in COVID-19 patients. J Appl Pharm Sci 2024, 14, 054-063, doi:10.7324/JAPS.2023.145308.
Central Portal of Public Services of the Portuguese Republic. Vaccination plan for COVID-19. Availabe online: https://eportugal.gov.pt/en/noticias/plano-de-vacinacao-para-a-covid-19 (accessed on 14 January 2022).
Duro, M.; Almeida, C.; Duro, I.; Sarmento, A. Immune response to COVID-19 vaccination in a population with and without a previous SARS-CoV-2 infection. Ir J Med Sci 2023, 192, 731-739, doi:10.1007/s11845-022-03044-4.
Ozurumba-Dwight, L.N.; Ogbonna, C.S.; Enwere, O.O. Monoclonal Antibodies as Drugs for Covid-19 and Public Health Impacts: A Review. EC Nurs Health 2021, 3, 18-25.
Abu Jabal, K.; Ben-Amram, H.; Beiruti, K.; Batheesh, Y.; Sussan, C.; Zarka, S.; Edelstein, M. Impact of age, ethnicity, sex and prior infection status on immunogenicity following a single dose of the BNT162b2 mRNA COVID-19 vaccine: real-world evidence from healthcare workers, Israel, December 2020 to January 2021. Euro Surveill 2021, 26, doi:10.2807/1560-7917.ES.2021.26.6.2100096.
Shrock, E.; Fujimura, E.; Kula, T.; Timms, R.T.; Lee, I.H.; Leng, Y.; Robinson, M.L.; Sie, B.M.; Li, M.Z.; Chen, Y., et al. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science 2020, 370, doi:10.1126/science.abd4250.
Klein, S.L.; Marriott, I.; Fish, E.N. Sex-based differences in immune function and responses to vaccination. Trans R Soc Trop Med Hyg 2015, 109, 9-15, doi:10.1093/trstmh/tru167.
Rahimi, G.; Rahimi, B.; Panahi, M.; Abkhiz, S.; Saraygord-Afshari, N.; Milani, M.; Alizadeh, E. An overview of Betacoronaviruses-associated severe respiratory syndromes, focusing on sex-type-specific immune responses. Int Immunopharmacol 2021, 92, 107365, doi:10.1016/j.intimp.2021.107365.
Conti, P.; Younes, A. Coronavirus COV-19/SARS-CoV-2 affects women less than men: clinical response to viral infection. J Biol Regul Homeost Agents 2020, 34, 339-343, doi:10.23812/Editorial-Conti-3.
Spiering, A.E.; de Vries, T.J. Why Females Do Better: The X Chromosomal TLR7 Gene-Dose Effect in COVID-19. Front Immunol 2021, 12, 756262, doi:10.3389/fimmu.2021.756262.
Cheng, M.I.; Li, J.H.; Riggan, L.; Chen, B.; Tafti, R.Y.; Chin, S.; Ma, F.; Pellegrini, M.; Hrncir, H.; Arnold, A.P., et al. The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences. Nat Immunol 2023, 24, 780-791, doi:10.1038/s41590-023-01463-8.
Libert, C.; Dejager, L.; Pinheiro, I. The X chromosome in immune functions: when a chromosome makes the difference. Nat Rev Immunol 2010, 10, 594-604, doi:10.1038/nri2815.
Pujantell, M.; Skenteris, N.T.; Claussen, J.M.; Grunhagel, B.; Thiele, R.J.; Altfeld, M. Sex-dependent differences in type I IFN-induced natural killer cell activation. Front Immunol 2023, 14, 1277967, doi:10.3389/fimmu.2023.1277967.
Bates, T.A.; McBride, S.K.; Leier, H.C.; Guzman, G.; Lyski, Z.L.; Schoen, D.; Winders, B.; Lee, J.Y.; Lee, D.X.; Messer, W.B., et al. Vaccination before or after SARS-CoV-2 infection leads to robust humoral response and antibodies that effectively neutralize variants. Sci Immunol 2022, 7, eabn8014, doi:10.1126/sciimmunol.abn8014.
Bleier, B.S.; Ramanathan, M., Jr.; Lane, A.P. COVID-19 Vaccines May Not Prevent Nasal SARS-CoV-2 Infection and Asymptomatic Transmission. Otolaryngol Head Neck Surg 2021, 164, 305-307, doi:10.1177/0194599820982633.
Haghpanah, F.; Lin, G.; Levin, S.A.; Klein, E. Analysis of the potential impact of durability, timing, and transmission blocking of COVID-19 vaccine on morbidity and mortality. EClinicalMedicine 2021, 35, 100863, doi:10.1016/j.eclinm.2021.100863.
Danchin, A.; Turinici, G. Immunity after COVID-19: Protection or sensitization? Math Biosci 2021, 331, 108499, doi:10.1016/j.mbs.2020.108499.
Meschi, S.; Matusali, G.; Colavita, F.; Lapa, D.; Bordi, L.; Puro, V.; Leoni, B.D.; Galli, C.; Capobianchi, M.R.; Castilletti, C., et al. Predicting the protective humoral response to a SARS-CoV-2 mRNA vaccine. Clin Chem Lab Med 2021, 59, 2010-2018, doi:10.1515/cclm-2021-0700.
Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Lee, S.S. A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations. Front Immunol 2022, 13, 801522, doi:10.3389/fimmu.2022.801522.
Focosi, D.; Maggi, F.; Franchini, M.; McConnell, S.; Casadevall, A. Analysis of Immune Escape Variants from Antibody-Based Therapeutics against COVID-19: A Systematic Review. Int J Mol Sci 2021, 23, doi:10.3390/ijms23010029.
Lazarevic, I.; Pravica, V.; Miljanovic, D.; Cupic, M. Immune Evasion of SARS-CoV-2 Emerging Variants: What Have We Learnt So Far? Viruses 2021, 13, doi:10.3390/v13071192.
Sattler, A.; Angermair, S.; Stockmann, H.; Heim, K.M.; Khadzhynov, D.; Treskatsch, S.; Halleck, F.; Kreis, M.E.; Kotsch, K. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J Clin Invest 2020, 130, 6477-6489, doi:10.1172/JCI140965.
Goldblatt, D.; Fiore-Gartland, A.; Johnson, M.; Hunt, A.; Bengt, C.; Zavadska, D.; Snipe, H.D.; Brown, J.S.; Workman, L.; Zar, H.J., et al. Towards a population-based threshold of protection for COVID-19 vaccines. Vaccine 2022, 40, 306-315, doi:10.1016/j.vaccine.2021.12.006.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Inês Duro, Maria Conceição Manso , cristina couto, Mary Duro
This work is licensed under a Creative Commons Attribution 4.0 International License.
In Scientific Letters, articles are published under a CC-BY license (Creative Commons Attribution 4.0 International License), the most open license available. The users can share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material for any purpose, even commercially), as long as they give appropriate credit, provide a link to the license, and indicate if changes were made (read the full text of the license terms and conditions of use).
The author is the owner of the copyright.