The Aquatic macrophytes as bioindicators of heavy metals contamination in estuarine ecosystems

Authors

  • Claudia Ribeiro TOXRUN – Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal. https://orcid.org/0000-0001-7245-4552
  • Agostinho Almeida LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal https://orcid.org/0000-0002-1297-3198
  • Cristina Couto TOXRUN – Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal https://orcid.org/0000-0003-2264-5603

DOI:

https://doi.org/10.48797/sl.2022.17

Keywords:

macrophyte, bioaccumulation, trace elements, metals, bioindicators, aquatic plants

Abstract

The use of aquatic plants as metal bioindicators may be a suitable tool for the management of aquatic ecosystems as they play an important role in the geochemical composition of water and sediments. This study evaluated the potential use of autochthonous aquatic macrophytes, Veronica anagallis-aquatica and Cakile maritima as bioindicators of cadmium, chromium, lead, zinc, and copper contamination in wetlands and their role on metal cycling. The content and distribution of these elements in roots, stems and leaves were compared in specimens collected in two estuaries with different anthropogenic pressures (Douro and Ave) and in the corresponding water and sediments. Differences on metals content were found on both species and were dependent on the estuary. No positive correlation was found between plant and water metals concentration, but a positive correlation was observed for sediments, except for Cr and Cd. Bioaccumulation and translocation factors showed that both species can contribute to the immobilization of Pb and Cd in Douro estuary in contrast to Ave estuary. These results demonstrate the influence of local environmental conditions in the bioaccumulation of in situ aquatic plants and suggest their potential use as bioindicators and for the management (phytoextraction and phytostabilization) of aquatic contaminated ecosystems.

References

Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, (9), e04691, doi:10.1016/j.heliyon.2020.e04691.

Yang, F.; Yun, Y.; Li, G.; Sang, N. Heavy metals in soil from gangue stacking areas increases children health risk and causes developmental neurotoxicity in zebrafish larvae. Sci Total Environ 2021, 794, 148629, doi:10.1016/j.scitotenv.2021.148629.

Bai, L.; Liu, X. L.; Hu, J.; Li, J.; Wang, Z. L.; Han, G.; Li, S. L.; Liu, C. Q. Heavy Metal Accumulation in Common Aquatic Plants in Rivers and Lakes in the Taihu Basin. Int J Environ Res Public Health 2018, 15, (12), doi:10.3390/ijerph15122857.

Ribeiro, C.; Couto, C.; Ribeiro, A. R.; Maia, A. S.; Santos, M.; Tiritan, M. E.; Pinto, E.; Almeida, A. A. Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal. Sci Total Environ 2018, 639, 1381-1393, doi: 10.1016/j.scitotenv.2018.05.234.

Couto, C.; Ribeiro, C.; Ribeiro, A. R.; Maia, A.; Santos, M.; Tiritan, M. E.; Pinto, E.; Almeida, A. A. Spatiotemporal Distribution and Sources of Trace Elements in Ave River (Portugal) Lower Basin: Estuarine Water, Sediments and Indigenous Flora. Int J Environ Res 2019, 13, (2), 303-318, doi: 10.1007/s41742-019-00174-z.

Stoichev, T.; Coelho, J. P.; De Diego, A.; Valenzuela, M. G. L.; Pereira, M. E.; de Chanvalon, A. T.; Amouroux, D. Multiple regression analysis to assess the contamination with metals and metalloids in surface sediments (Aveiro Lagoon, Portugal). Mar Pollut Bull 2020, 159, 111470, doi: 10.1016/j.marpolbul.2020.111470.

Truchet, D. M.; Buzzi, N. S.; Negrin, V. L.; Botté, S. E.; Marcovecchio, J. E. First long-term assessment of metals and associated ecological risk in subtidal sediments of a human-impacted SW Atlantic estuary. Mar Polluti Bull 2022, 174, 113235, doi: 10.1016/j.marpolbul.2021.113235.

Mishra, A. K.; Farooq, S. H. Trace metal accumulation in seagrass and saltmarsh ecosystems of India: comparative assessment and bioindicator potential. Mar Pollut Bull 2022, 174, 113251, doi: 10.1016/j.marpolbul.2021.113251.

Bonanno, G.; Vymazal, J.; Cirelli, G. L. Translocation, accumulation and bioindication of trace elements in wetland plants. Sci Total Environ 2018, 631-632, 252-261, doi: 10.1016/j.scitotenv.2018.03.039.

EU-Directive, Directive of the European Parliament and of the Council 2000/60/EC, establishing a framework for community action in the field of water policy. Off J Europ Comm 2000, L 327, 1-72.

Wani RA; Ganai BA; Shah MA; B, U. Heavy Metal Uptake Potential of Aquatic Plants through Phytoremediation Technique - A Review. J Bioremediat Biodegrad 2017, 8, (4), 404, doi: 10.4172/2155-6199.1000404.

Jenačković, D. D.; Zlatković, I. D.; Lakušić, D. V.; Ranđelović, V. N. Macrophytes as bioindicators of the physicochemical characteristics of wetlands in lowland and mountain regions of the central Balkan Peninsula. Aquat Bot 2016, 134, 1-9, doi: 10.1016/j.aquabot.2016.06.003.

Pasricha, S.; Mathur, V.; Garg, A.; Lenka, S.; Verma, K.; Agarwal, S. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environ Challenges 2021, 4, 100197, doi: 10.1016/j.envc.2021.100197.

Sharma, P.; Ngo, H. H.; Khanal, S.; Larroche, C.; Kim, S.-H.; Pandey, A. Efficiency of transporter genes and proteins in hyperaccumulator plants for metals tolerance in wastewater treatment: Sustainable technique for metal detoxification. Environ Technol Innov 2021, 23, 101725, doi: 10.1016/j.eti.2021.101725.

Taamalli, M.; Ghabriche, R.; Amari, T.; Mnasri, M.; Zolla, L.; Lutts, S.; Abdely, C.; Ghnaya, T. Comparative study of Cd tolerance and accumulation potential between Cakile maritima L. (halophyte) and Brassica juncea L. Ecol Eng 2014, 71, 623-627, doi: 10.1016/j.ecoleng.2014.08.013.

Pachura, P.; Ociepa-Kubicka, A.; Skowron-Grabowska, B. Assessment of the availability of heavy metals to plants based on the translocation index and the bioaccumulation factor. Desalin Water Treat 2016, 57, (3), 1469-1477, doi: 10.1080/19443994.2015.1017330.

Usman, A. R.; Alkredaa, R. S.; Al-Wabel, M. I. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicol Environ Saf 2013, 97, 263-70, doi: 10.1016/j.ecoenv.2013.08.009.

Yoon, J.; Cao, X.; Zhou, Q.; Ma, L. Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 2006, 368, (2-3), 456-64, doi: 10.1016/j.scitotenv.2006.01.016.

CCME, Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. In Council, C., Ed. 2015; Vol. http://st-ts.ccme.ca/en/index.html, accessed 02-10-2017.

CCME, Water Quality Guidelines for the Protection of Aquatic Life. http://stts.ccme.ca/en/index.html 2019.

Ribeiro, C.; Tiritan, M. E.; Rocha, E.; Rocha, M. J. Seasonal and Spatial Distribution of Several Endocrine-Disrupting Compounds in the Douro River Estuary, Portugal. Arch Environ Contam Toxicol 2009, 56, (1), 1-11.

Wang, Z.; Lin, K.; Liu, X. Distribution and pollution risk assessment of heavy metals in the surface sediment of the intertidal zones of the Yellow River Estuary, China. Mar Pollut Bull 2022, 174, 113286.

Santos, R.M.B.; Monteiro, S.M.V.; Cortes, R.M.V.; Pacheco, F.A.L.; Fernandes, L.F.S. Seasonal Differences in Water Pollution and Liver Histopathology of Iberian Barbel (Luciobarbus bocagei) and Douro Nase (Pseudochondrostoma duriense) in an Agricultural Watershed. Water 2022, 14, 444.

Cambrollé, J.; Redondo-Gómez, S.; Mateos-Naranjo, E.; Figueroa, M. E. Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 2008, 56, (12), 2037-42, doi: 10.1016/j.marpolbul.2008.08.008.

Arbelet-Bonnin, D.; Ben-Hamed-Louati, I.; Laurenti, P.; Abdelly, C.; Ben-Hamed, K.; Bouteau, F. Chapter Two - Cakile maritima, a promising model for halophyte studies and a putative cash crop for saline agriculture. In Advances in Agronomy, Sparks, D. L., Ed. Academic Press: 2019; Vol. 155, pp 45-78.

Almeida, C. M. R.; Mucha, A. P.; Vasconcelos, M. T. S. D. Influence of the sea rush Juncus maritimus on metal concentration and speciation in estuarine sediment colonized by the plant. Environ Sci Technol 2004, 38 11, 3112-8.

Teuchies, J.; Jacobs, S.; Oosterlee, L.; Bervoets, L.; Meire, P. Role of plants in metal cycling in a tidal wetland: implications for phytoremidiation. Sci Total Environ 2013, 445-446, 146-54, doi: 10.1016/j.scitotenv.2012.11.088.

Khalid, K. M.; Ganjo, D. G. A. Native aquatic plants for phytoremediation of metals in outdoor experiments: implications of metal accumulation mechanisms, Soran City-Erbil, Iraq. Int J Phytoremediation 2021, 23, (4), 374-386, doi: 10.1080/15226514.2020.1815645.

Ahmad, A.; Hadi, F.; Ali, N.; Jan, A. U. Enhanced phytoremediation of cadmium polluted water through two aquatic plants Veronica anagallis-aquatica and Epilobium laxum. Environ Sci Pollut Res Int 2016, 23, (17), 17715-29, doi: 10.1007/s11356-016-6960-2.

Kroflič, A.; Germ, M.; Golob, A.; Stibilj, V. Does extensive agriculture influence the concentration of trace elements in the aquatic plant Veronica anagallis-aquatica? Ecotoxicol Environ Saf 2018, 150, 123-128, doi: 10.1016/j.ecoenv.2017.10.055.

Almeida, C. M. R.; Mucha, A. P.; Vasconcelos, M. T. S. D. Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environ Pollut 2006, 142, (1), 151-159, doi: 10.1016/j.envpol.2005.09.002.

Downloads

Published

2022-07-25

How to Cite

Ribeiro, C., Almeida, A., & Couto, C. . (2022). The Aquatic macrophytes as bioindicators of heavy metals contamination in estuarine ecosystems. Scientific Letters, 1(1), 5. https://doi.org/10.48797/sl.2022.17

Issue

Section

Research Articles