Targeting BUB3 in combination with paclitaxel inhibits proliferation of glioblastoma cells by enhancing cellular senescence

Authors

  • Patrícia M. A. Silva UNIPRO - Oral Pathology and Rehabilitation Research Unit; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal https://orcid.org/0000-0002-0694-7321
  • Ana V. Nascimento UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal https://orcid.org/0000-0001-6828-1628
  • Olga Martinho Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal; Molecular Oncology Research Center, São Paulo 14784-400, Brazil https://orcid.org/0000-0002-3221-0403
  • Rui M. Reis Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal; Molecular Oncology Research Center, São Paulo 14784-400, Brazil https://orcid.org/0000-0002-9639-7940
  • Hassan Bousbaa UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal; Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal https://orcid.org/0000-0002-4006-5779

DOI:

https://doi.org/10.48797/sl.2022.11

Keywords:

glioblastoma, BUB3, paclitaxel, spindle assembly checkpoint, mitosis, senescence

Abstract

Glioblastoma (GBM) is the most common malignant primary brain tumor, with remarkably poor prognosis and survival rates. Existing treatments cannot cure GBM patients, and GBM recurrence remains a clinical bottleneck. To explore new GBM chemotherapeutic targets and new therapeutic strategies, the role of the spindle assembly checkpoint (SAC) protein BUB3 in GBM was investigated. We found BUB3 overexpression to be a common feature in GBM tissues. Moreover, BUB3 knockdown significantly inhibited proliferation of glioblastoma cells, and enhanced the antiproliferative activity of paclitaxel on these cells, through potentiation of multipolar spindles and SAC weakening. Interestingly, we showed that BUB3 downregulation exerts its antiproliferative activity mainly through induction of premature cellular senescence and, to a lesser extent, through apoptosis. Senescence phenotype, but not apoptosis, was highly potentiated in BUB3-depleted glioblastoma cells treated with clinically relevant doses of paclitaxel. Based on these observations, BUB3 inhibition combined with paclitaxel is suggested as a potentially effective strategy for the treatment of GBM. We propose BUB3 as a novel target and biomarker for GBM.

References

Gritsch, S.; Batchelor, T.T.; Gonzalez Castro, L.N. Diagnostic, Therapeutic, and Prognostic Implications of the 2021 World Health Organization Classification of Tumors of the Central Nervous System. Cancer 2022, 128, 47–58, doi:10.1002/cncr.33918.

Lim, S.K.; Llaguno, S.R.A.; McKay, R.M.; Parada, L.F. Glioblastoma Multiforme: A Perspective on Recent Findings in Human Cancer and Mouse Models. BMB Rep. 2011, 44, 158–164, doi:10.5483/BMBRep.2011.44.3.158.

Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996, doi:10.1056/NEJMoa043330.

Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular Targeted Therapy of Glioblastoma. Cancer Treat. Rev. 2019, 80, 101896, doi:10.1016/j.ctrv.2019.101896.

Raysi Dehcordi, S.; De Paulis, D.; Marzi, S.; Ricci, A.; Cimini, A.; Cifone, M.G.; Galzio, R.J. Survival Prognostic Factors in Patients with Glioblastoma: Our Experience. J. Neurosurg. Sci. 2012, 56, 239–245.

Kops, G.J.P.L.; Weaver, B.A.A.; Cleveland, D.W. On the Road to Cancer: Aneuploidy and the Mitotic Checkpoint. Nat. Rev. Cancer 2005, 5, 773–785, doi:10.1038/nrc1714.

Silva, P.; Barbosa, J.; Nascimento, A.V.; Faria, J.; Reis, R.; Bousbaa, H. Monitoring the Fidelity of Mitotic Chromosome Segregation by the Spindle Assembly Checkpoint. Cell Prolif. 2011, 44, doi:10.1111/j.1365-2184.2011.00767.x.

Hoyt, M.A.; Totis, L.; Roberts, B.T. S. Cerevisiae Genes Required for Cell Cycle Arrest in Response to Loss of Microtubule Function. Cell 1991, 66, 507–517, doi:10.1016/0092-8674(81)90014-3.

Wang, Y.; Burke, D.J. Checkpoint Genes Required to Delay Cell Division in Response to Nocodazole Respond to Impaired Kinetochore Function in the Yeast Saccharomyces Cerevisiae. Mol. Cell. Biol. 1995, 15, 6838–6844, doi:10.1128/MCB.15.12.6838.

Logarinho, E.; Resende, T.; Torres, C.; Bousbaa, H. The Human Spindle Assembly Checkpoint Protein Bub3 Is Required for the Establishment of Efficient Kinetochore-Microtubule Attachments. Mol. Biol. Cell 2008, 19, 1798–1813, doi:10.1091/mbc.e07-07-0633.

Reis, R.M.; Nakamura, M.; Masuoka, J.; Watanabe, T.; Colella, S.; Yonekawa, Y.; Kleihues, P.; Ohgaki, H. Mutation Analysis of HBUB1, HBUBR1 and HBUB3 Genes in Glioblastomas. Acta Neuropathol. 2001, 101, 297–304, doi:10.1007/s004010100366.

Logarinho, E.; Bousbaa, H. Kinetochore-Microtubule Interactions “in Check” by Bub1, Bub3 and BubR1: The Dual Task of Attaching and Signalling. Cell Cycle 2008, 7.

Silva, P.M.A.; Delgado, M.L.; Ribeiro, N.; Florindo, C.; Tavares, Á.A.; Ribeiro, D.; Lopes, C.; do Amaral, B.; Bousbaa, H.; Monteiro, L.S. Spindly and Bub3 Expression in Oral Cancer: Prognostic and Therapeutic Implications. Oral Dis. 2019, 25, 1291–1301, doi:10.1111/odi.13089.

Maia, A.R.R.; Linder, S.; Song, J.-Y.; Vaarting, C.; Boon, U.; Pritchard, C.E.J.; Velds, A.; Huijbers, I.J.; van Tellingen, O.; Jonkers, J.; et al. Mps1 Inhibitors Synergise with Low Doses of Taxanes in Promoting Tumour Cell Death by Enhancement of Errors in Cell Division. Br. J. Cancer 2018, 118, 1586–1595, doi:10.1038/s41416-018-0081-2.

Wengner, A.M.; Siemeister, G.; Koppitz, M.; Schulze, V.; Kosemund, D.; Klar, U.; Stoeckigt, D.; Neuhaus, R.; Lienau, P.; Bader, B.; et al. Novel Mps1 Kinase Inhibitors with Potent Antitumor Activity. Mol. Cancer Ther. 2016, 15, 583–592, doi:10.1158/1535-7163.MCT-15-0500.

Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 2017, 19, 649–658, doi:10.1016/j.neo.2017.05.002.

Zasadil, L.M.; Andersen, K.A.; Yeum, D.; Rocque, G.B.; Wilke, L.G.; Tevaarwerk, A.J.; Raines, R.T.; Burkard, M.E.; Weaver, B.A. Cytotoxicity of Paclitaxel in Breast Cancer Is Due to Chromosome Missegregation on Multipolar Spindles. Sci. Transl. Med. 2014, 6, 229ra43, doi:10.1126/scitranslmed.3007965.

Weaver, B.A. How Taxol/Paclitaxel Kills Cancer Cells. Mol. Biol. Cell 2014, 25, 2677–2681, doi:10.1091/mbc.E14-04-0916.

Yang, Z.; Kenny, A.E.; Brito, D.A.; Rieder, C.L. Cells Satisfy the Mitotic Checkpoint in Taxol, and Do so Faster in Concentrations That Stabilize Syntelic Attachments. J. Cell Biol. 2009, 186, 675–684, doi:10.1083/jcb.200906150.

Brito, D.A.; Yang, Z.; Rieder, C.L. Microtubules Do Not Promote Mitotic Slippage When the Spindle Assembly Checkpoint Cannot Be Satisfied. J. Cell Biol. 2008, 182, 623–629, doi:10.1083/jcb.200805072.

Silkworth, W.T.; Nardi, I.K.; Scholl, L.M.; Cimini, D. Multipolar Spindle Pole Coalescence Is a Major Source of Kinetochore Mis-Attachment and Chromosome Mis-Segregation in Cancer Cells. PLoS One 2009, 4, e6564, doi:10.1371/journal.pone.0006564.

Derry, W.B.; Wilson, L.; Jordan, M.A. Substoichiometric Binding of Taxol Suppresses Microtubule Dynamics. Biochemistry 1995, 34, 2203–2211, doi:10.1021/bi00007a014.

Kuniyasu, K.; Iemura, K.; Tanaka, K. Delayed Chromosome Alignment to the Spindle Equator Increases the Rate of Chromosome Missegregation in Cancer Cell Lines. Biomolecules 2018, 9, doi:10.3390/biom9010010.

Kawakami, M.; Liu, X.; Dmitrovsky, E. New Cell Cycle Inhibitors Target Aneuploidy in Cancer Therapy. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 361–377, doi:10.1146/annurev-pharmtox-010818-021649.

Birkbak, N.J.; Eklund, A.C.; Li, Q.; McClelland, S.E.; Endesfelder, D.; Tan, P.; Tan, I.B.; Richardson, A.L.; Szallasi, Z.; Swanton, C. Paradoxical Relationship between Chromosomal Instability and Survival Outcome in Cancer. Cancer Res. 2011, 71, 3447–3452, doi:10.1158/0008-5472.CAN-10-3667.

Komarova, N.L.; Wodarz, D. The Optimal Rate of Chromosome Loss for the Inactivation of Tumor Suppressor Genes in Cancer. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 7017–7021, doi:10.1073/pnas.0401943101.

Giam, M.; Rancati, G. Aneuploidy and Chromosomal Instability in Cancer: A Jackpot to Chaos. Cell Div. 2015, 10, 3, doi:10.1186/s13008-015-0009-7.

Taylor, S.S.; Ha, E.; McKeon, F. The Human Homologue of Bub3 Is Required for Kinetochore Localization of Bub1 and a Mad3/Bub1-Related Protein Kinase. J. Cell Biol. 1998, 142, 1–11, doi:10.1083/jcb.142.1.1.

Martinez-Exposito, M.J.; Kaplan, K.B.; Copeland, J.; Sorger, P.K. Retention of the BUB3 Checkpoint Protein on Lagging Chromosomes. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 8493–8498, doi:10.1073/pnas.96.15.8493.

Collado, M.; Serrano, M. The Senescent Side of Tumor Suppression. Cell Cycle 2005, 4, 1722–1724, doi:10.4161/cc.4.12.2260.

Courtois-Cox, S.; Jones, S.L.; Cichowski, K. Many Roads Lead to Oncogene-Induced Senescence. Oncogene 2008, 27, 2801–2809, doi:10.1038/sj.onc.1210950.

Kumari, R.; Jat, P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front. cell Dev. Biol. 2021, 9, 645593, doi:10.3389/fcell.2021.645593.

Kurz, D.J.; Decary, S.; Hong, Y.; Erusalimsky, J.D. Senescence-Associated (Beta)-Galactosidase Reflects an Increase in Lysosomal Mass during Replicative Ageing of Human Endothelial Cells. J. Cell Sci. 2000, 113 ( Pt 2, 3613–3622.

Babu, J.R.; Jeganathan, K.B.; Baker, D.J.; Wu, X.; Kang-Decker, N.; van Deursen, J.M. Rae1 Is an Essential Mitotic Checkpoint Regulator That Cooperates with Bub3 to Prevent Chromosome Missegregation. J. Cell Biol. 2003, 160, 341–353, doi:10.1083/jcb.200211048.

Dai, W.; Wang, X. Aging in Check. Sci. Aging Knowledge Environ. 2006, 2006, pe9, doi:10.1126/sageke.2006.7.pe9.

Baker, D.J.; Jeganathan, K.B.; Malureanu, L.; Perez-Terzic, C.; Terzic, A.; van Deursen, J.M.A. Early Aging-Associated Phenotypes in Bub3/Rae1 Haploinsufficient Mice. J. Cell Biol. 2006, 172, 529–540, doi:10.1083/jcb.200507081.

Sieben, C.J.; Sturmlechner, I.; van de Sluis, B.; van Deursen, J.M. Two-Step Senescence-Focused Cancer Therapies. Trends Cell Biol. 2018, 28, 723–737, doi:10.1016/j.tcb.2018.04.006.

Bargiela-Iparraguirre, J.; Prado-Marchal, L.; Pajuelo-Lozano, N.; Jiménez, B.; Perona, R.; Sánchez-Pérez, I. Mad2 and BubR1 Modulates Tumourigenesis and Paclitaxel Response in MKN45 Gastric Cancer Cells. Cell Cycle 2014, 13, 3590–3601, doi:10.4161/15384101.2014.962952.

Dikovskaya, D.; Cole, J.J.; Mason, S.M.; Nixon, C.; Karim, S.A.; McGarry, L.; Clark, W.; Hewitt, R.N.; Sammons, M.A.; Zhu, J.; et al. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program That Promotes Multinucleation and Cell Cycle Arrest. Cell Rep. 2015, 12, 1483–1496, doi:10.1016/j.celrep.2015.07.055.

Nascimento, A.V.; Singh, A.; Bousbaa, H.; Ferreira, D.; Sarmento, B.; Amiji, M.M. Mad2 Checkpoint Gene Silencing Using Epidermal Growth Factor Receptor-Targeted Chitosan Nanoparticles in Non-Small Cell Lung Cancer Model. Mol. Pharm. 2014, 11, 3515–3527, doi:10.1021/mp5002894.

Nascimento, A.V.; Singh, A.; Bousbaa, H.; Ferreira, D.; Sarmento, B.; Amiji, M.M. Overcoming Cisplatin Resistance in Non-Small Cell Lung Cancer with Mad2 Silencing SiRNA Delivered Systemically Using EGFR-Targeted Chitosan Nanoparticles. Acta Biomater. 2017, 47, 71–80, doi:10.1016/j.actbio.2016.09.045.

BUB3 enhances glioblastoma cell senescence

Downloads

Published

2022-03-25

How to Cite

Silva, P., Nascimento, A., Martinho, O., Reis, R., & Bousbaa, H. . (2022). Targeting BUB3 in combination with paclitaxel inhibits proliferation of glioblastoma cells by enhancing cellular senescence. Scientific Letters, 1(1), 1. https://doi.org/10.48797/sl.2022.11

Issue

Section

Research Articles

Most read articles by the same author(s)